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DUALITY FOR QUADRILATERALS

K. J. PSZCZOLA, A. B. ROMANOWSKA, AND J. D. H. SMITH

ABSTRACT. Based on the duality for finite-dimensional simplices presented
in [PRS02], we construct a duality for quadrilaterals (two-dimensional
affine images of the three-dimensional simplex Aj).

One of the major research programmes in the theory of modes is the search for
a duality theory of barycentric algebras. Since a complete theory seems quite
elusive at the moment, the programme is proceeding by the gradual assembly
of various pieces. Of course, the starting point is the now classical duality
theory for semilattices (see [HMS74]). Recently, progress has been made on
duality for certain convex subsets of simplices (the so-called feasible sets of or-
dered sets [RS01]) and, in a different direction, for finite-dimensional simplices
themselves (see [PRS02]), the latter being finitely generated free barycentric
algebras. The next stage is to find an algebraic duality for polytopes in real
affine spaces, as homomorphic images of finite-dimensional simplices. In this
paper we show that there exists a duality between the class of all quadrilater-
als (two-dimensional affine images of the three-dimensional simplex Ajz) and
a certain class of topological convex sets.

Duality for finite-dimensional simplices can be formulated as follows (see

[PRS02]):
Theorem 1 ([PRS02]). There ezists a duality between the category S of finite-

dimensional simplices and the category g of hypercubes with constants. The
duality is realised by functors

D:8—B; Anr 8(An, 1) 21" and E: B - 5; I o B Ty 2 A,
acting on morphisms in a standard fashion:
D:(f:Ap = Ap)— (fD: ApD — A,D); afD = fa,
where a € Ay D = S(Ap, 1), and
E:(g: "1 (gE :I'E - I*E); 2gF = g,
where z € 'E = E(fl,i)
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The structure dual to the simplex Ajz is the hypercube 4. We expect
the structure dual to a homomorphic image of Az to be a subalgebra of the
hypercube I

For each n € N there is, up to isomorphism, exactly one simplex A,.
For quadrilaterals, the situation is different: there are infinitely many non-
isomorphic quadrilaterals. In fact, two proper quadrilaterals are isomorphic
as barycentric algebras if and only if their diagonals intersect in the same
proportions. For a quadrilateral with vertices a, b, ¢, d, the condition that the
diagonals intersect in the proportions p, g for some p, ¢ € I, becomes acp = bdq.
When speaking of a “concrete” quadrilateral, we will thus mean a quadrilateral
with given parameters p and gq.

We introduce the following notation. Let B be the category of all barycen-

tric algebras (and homomorphisms between them). Then g will denote the
category of barycentric algebras with a unit interval of constants (cf. [PRS02]).
Let Q denote the full subcategory of B whose objects are all quadrilaterals.

Then Q will denote the category of barycentric algebras with a unit interval

of constants, each of whose objects is of the form B(Q,1) for a certain object
Q of Q. We adopt the convention that ~ will denote dual spaces and objects,

while ™ will refer to the second dual.

For a given quadrilateral Q specified by the parameters p, ¢ we will describe
the subalgebra Q= B(Q,I) < B(As,I) = I,

The elements of the hypercube [ B(A3,1) correspond to the affine
homomorphisms Az — I from the free barycentric algebra on 4 generators
Zo,T1,Z2,T3. These homomorphisms are uniquely determined by their val-
ues on the free generators; the i-th coordinate of a point of the hypercube
represents the image of the i-th free generator under the homomorphism.

The elements of the subalgebra Q = B(Q,I) correspond to the homomor-
phisms Q — I. The i-th coordinate of such an element represents the image
under the homomorphism of the i-th vertex of the quadrilateral Q. Denote
the vertices of the quadrilateral by zoh, z1h, zoh, z3h. Because the diagonals
of the quadrilateral intersect in the proportions p and g, the vertices Satiéfy
the equation zohzohp = z1hzshq. 1t follows that the coefficients (z,y, 2z,t) of
each element of the subalgebra satisfy the corresponding equation

(1) rzp = ylq.

Note that the condition (1) may be written in the form z(1 — p) — y(1 —
q) + zp — t¢ = 0. This is the equation of a hyperplane in four-dimensional
space, containing the point 0. The desired figure Q is the intersection of the
hypercube I* with the hyperplane determined by equation (1). Tt is a polytope
spanned by points lying on edges of the hypercube.
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In order for a point with coordinates (z,y, z,t) to lie on an edge of the
hypercube, at most one of the coordinates may differ from 0 or 1. If three of
the coordinates are zero, then (1) implies that all four coordinates are zero.
Consider the case where exactly two of the coordinates are zero. This may
happen in any of (‘21) = 6 ways. In each such case, one of the two remaining
coordinates will be 1, and the value of the remaining coordinate is completely

determined by (1).

If the condition zzp = ytq holds, then x — xzp + 2p = y — yqg + tg, or
equivalently 1 — o — p + zp +p—zp=1—y—q-+yq+q—tg Thisin turn
reduces to (1 — z)(1 — z)p = (1 —y)(1 — t)g. In other words, if (z,y,2,t) is a
vertex of the figure, then sois (1 —z,1 — yjl — 2,1 —t). Certainly the points
(0,0,0,0) and (1,1,1,1) are also vertices of the figure. Thus in total there are
(3) -2-2+2 = 26 potential vertices. They are described and named in Table 1,
together with the conditions specifying the values of p and ¢ for which each
potential vertex does not fall outside the hypercube.

TABLE 1. Vertices of the image of the quadrilateral p, ¢ lying

on edges of the hypercube I

4(0,0,0,0) 1(1,1,1,1)
u(1, 1:7‘;,0,0) u'(0, ]f%q, 1,1) |forp>gq
v(l,l,%,O) v'(0,0,%,l) for p > ¢
a(1=%,1,0,0) | @/($2,0,1,1) |forp<gq
9(1, 1,0, q—;—p-) ¥'(0,0, 1, %) for p < gq
s((154,1,1,0) | 8'(%5,0,0,1) | for p < ¢
t(O,l%q,l,O) t’(l,lIz—;p,O,l) forp <q
5(0,1,1, ¥2=1) | §(1,0,0,22) | forp > ¢
£0,1,45%,0) | #(1,0,EX=1,1) | for p > ¢/
po(521,0,1,0) | pp(155,1,0,1) |for p=0
pl(laoap;_lao) pll(oalaiﬁal) fOI‘p:1
qo(l,l{—a,l,O) q{)(O,E%T,O,l) for g =10
@(0,1,0,93) | ¢(1,0,1,1) |forg=1

The key task of the paper is to demonstrate the isomorphism Q(E(Q, 0,1

o

@, enabling one to recover (the isomorphism class of) the quadrilateral barycen-
tric algebra Q from its dual B(Q, ). Depending on the values of p and ¢, there
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are 17 cases to consider: abe for ¢ < p and ¢ < p'; bee for ¢ < p and q > p/;
cde for ¢ > p and ¢ > p'; ade for ¢ > p and g < p’; ae for ¢ = p and ¢ < p';
be for ¢ < p and ¢ =p’; ce for ¢ = p and q > p'; de for ¢ > p and ¢ = p/,
for p,q € 1% ab for ¢ = 0,p € 1% be for p = 1,g €1% cd for g = 1,p € 1% da
forp:O,qEIO;aforquandpzo;bforquandpzl;cforq:l
andp=1;dforg=1landp=0;eforp=gq= % The names of the various
cases refer to Figure 1. Note that the cases correspond to the first simplicial
decomposition of the square. Note also that there are really only 5 different
cases: e, x, ze, vy and zye, where z,y € {a,b,¢,d} and z # y. Each of the 17
cases falls into one of these 5 types.

FIGURE 1
q
d ¢ q=p
,7,5,1
u,v,8,t X u, v, §,t
U, v, 8,
P
a b
q=7

Recall the following (see e.g. [RS85], Proposition 159):

Theorem 2. A wvariety V is a variety of entropic algebras if and only i,
for each pair of V- algebras A and B, the set V(A,B) is a subalgebm of the

V-algebra B4,
Because barycentric algebras are entropic, one has the following:

Corollary 3. For each pair of barycentric algebras A and B, the set B(A, B)
15 a barycentric algebra.

We now formulate the main result:
Theorem 4. There is a duality between the category Q of quadrilaterals and

the category Q of hypercube subalgebras with constants. The duality is realised
by functors

D:Q—Q QB(Q)
and R R Lo
E:Q-Q; Qr BQT),
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with standard actions on morphisms

D:(f: Q= Q)= (fD:QD~QD); afD=fa
fora € Q'D =B(Q,1) and

E:(g:Q—»Q')H(gE:Q’E—)@E); zgFE = gz
forz e QFE = g(@’,i)

Proof. We will consider the cases abe, be, ab, b and e. We will show that in each
of these cases, there is a barycentric algebra isomorphism B(E(Q, I),T) ~ Q.

Since we are fixing the constant 0, we may use the language of vectors,
identifying each point & with the vector from 0 to a. We wish to determine
a minimal set of vertices specifying the dual subalgebra Q For a given point
@, set o = 1 — a. For each « in the potential vertex set {u,v,s,t,4,7,
5,%,p0,P1,q0,q1}, one also has ¢ in the set. It thus suffices to choose just one
of @ and o/. Similarly, since 0 and I are always vertices, one does not need to
mention them explicitly.

In dealing with each separate case we will assume, unless explicitly stated
otherwise, that under Q — I we have u — z and v — y for certain z,y € L.
We will then examine the additional conditions on z and y that are needed
to obtain a homomorphism. As the second dual we thus expect to obtain a
certain subset of the square I? = {(z,y) |0 <z < 1,0 <y < 1}.

CASE agbe: Assume p > ¢ and p < ¢’. The dual subalgebra @1 of the
hypercube is then spanned by the points 0,4, v, s,¢,u/,v', 8, ¢, 1. As observed
earlier, it suffices to consider the points u,v,s,t, which already specify the
subalgebra uniquely. Note that the matrix consisting of the vectors 4,7, 5t
has rank 2, since the matrices

i-p—g 1— 1- 1—p—
1}1) 1 b 2 iTZ ?% 13‘7(1 0
=T A L
0 Pp—q 1 0 0 0 0
0 0 0 0 0 0 0 0

are row-equivalent. Express the vectors § and ¢ as linear combinations of the
vectors 4 and U

1_
g=-9 "9z, P g
g—pl-—p pP—q
f= P g4 P 5

q—p p—q
In order for the vertices s and ¢ to lie in the interval I, the following conditions
must be satisfied: .
<-4 274 Py <y,
g-pl—-p p—g¢
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P p

0< T+ y <1
qg—-p pP—q
These may be cast in the form
Loy > 14,
2.y < 11—:%32-1— %,
3.y >,

reducing in turn to the conditions 2 and 3. These conditions determine a

certain subset Ql of the square I?. Note that Ql is a quadrilateral whose

corners lie at the points a(0,0), b(1, 1), C(E%, 1) and d(0, pp%q). The diagonal
from a to ¢ has the equation

l-¢q

Y= 1—p

The diagonal from d to b has the equation

yol, P9
p p

The point of intersection of these diagonals is s(1 — p,1 — ¢). Thus

qu—p)ﬂ: q

Zz.

C’:”:[l—P,l*Q], se=| 1—¢ l_qas and
ac| 1—1—%
Similarly
}:[1_p,€(1_p)], S%Z[P,q]zl ds and
p —
db 1+ 5

It thus follows that the second dual Q, is isomorphic to the original quadri-
lateral Q.

CASE be:  Assume p > g and p = ¢’. The dual subalgebra Qg of the hyper-
cube is then spanned by the points u, v, s = ¢(0,1,1,0). Note once again that
the matrix consisting of the vectors @, %, §,{ has rank 2. Express the vector §
as a linear combination of the vectors @ and 7

f=i=--—L g4+ 2 5
pb—q p—q
We have the following condition:
0< L gt Ly,

p—q p—q
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which may be formulated as

wSyS$+Q:2
b2

This condition determines a certain subset QQ of the square 12. Note that QQ
is the quadrilateral with the vertices a(0,0), b(1,1), ¢(£,1) and d(0, %;%). As
in the previous case, we determine the point of intersection of its diagonals.
The diagonal from a to ¢ is

_bp
y==z
q
The diagonal from d to b is
p p
Their point of intersection is s(; L, 5%]) Thus
2
as = [L, L], §t = [qi, L] =% g5 and
P+q ptq plp+q) p+qg p
las| 1
o] " 1+2 P
P
(using the assumption p = ¢’). Similarly
2
ds:[~—q—,q7], s :[L,L =245 and
p+q plp+q ptapta ¢
|ds| 1
—_— = ? =q
jdb] 1+

Thus again the second dual QQ is isomorphic to the original quadrilateral Qo.

CASE ab:  Assume ¢ = 0. The dual subalgebra, Q;; of the hypercube is then
determined by the points u(1,1—p,0,0), v = s == g¢(1, 1, 1,0), £(0,p, 1,0). The
matrix composed of the vectors @, 7, 5,t, ¢o has rank 2. Express the vector ¢

—

as a linear combination of the vectors # and -
t=17— 1.
We have the following condition:
0<y—z <1,
which may be cast in the form

r<y<z+1.

This condition determines a certain subset Qg, of the square I2. In this case

Q3 is a triangle with the vertices a(0,0), 5(1,1) and ¢(0,1). The triangle is a
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degenerate quadrilateral, in which the diagonals intersect on one of the sides.

Thus the second dual Qs is isomorphic to the original figure Q3.

CASE b:  Assume ¢ = 0 and p = 1. The dual subalgebra Q4 of the hypercube
is then determined by the points u = p;(1,0,0,0), v = s = qo(1,1,1,0),
t(0,1,1,0). The matrix consisting of the vectors @, 7, 51,46, p1 is of rank 2.
Proceeding as in the previous cases, one may express the vector £ as a linear
combination of the vectors 7 and ¥, namely ¢ = ¢ — @. We thus have the same
situation as in the preceeding case.

CASE e: Assume p = ¢ and p = ¢/. The assumption implies p=gq= l

In this case the dual subalgebra Qs of the hypercube is determined by the
points u. = v(1,1,0,0), s = ¢(0,1,1,0). The matrix consisting of the vectors
i, ¥, 8, t of course again has rank 2. Consider u + z, s — 5. Since there are no
addltlonal conditions, we obtain the entire square 12 ={(z,y) |0<z2<1,0<

y < 1} as the second dual Q5 It is isomorphic with the original parallelogram.
Now from Corollary 3 we can deduce that B(Q,I) is an object of the category

Q and B(Q I) is an object of the category Q Furthermore, the functors E

and D are well-defined.
The proof of Theorem 4 is now complete. O

Remark 5. In all the various cases, the second dual contains the diagonal of
the square. In case e this diagonal is internal, but in the other cases it appeals
as one of the edges of the second dual.
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