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Abstract. This is the second part of a two-part paper intended
to introduce the use of Latin square and quasigroup techniques in
a combinatorial approach to the unit groups of Clifford algebras.
The aim of this part is to apply the techniques to a detailed study of
the 32-element unit group of the real Clifford algebra of Minkowski
spacetime, which we describe as the Pauli hull. This important
special case deserves attention, both because of its connections
with special relativity, and also as a home for multiple copies of the
Pauli group of quantum information theory. Particular attention
focuses on the automorphism group of the Pauli hull, and on the
configurations of the copies of the Pauli group within the Pauli
hull.
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1. Introduction

As the second part of a two-part combinatorial approach to the unit
groups of Clifford algebras, this paper is a direct continuation of the
first part, [11], where the motivation and requisite background for the
approach were presented. In particular, we recall the geometric and
multivalent representations of the multiplication group of a group, as
identified in [11, §1.3]. We also remind readers of the conventions for
terminology and notation established in [11, §1.3.4] and elsewhere in
that paper.

1.1. The extraspecial Pauli hull. The unit group of the real Clifford
algebra Cl(3, 1) of Minkowski space (with signature +++−) has order
32. It is the extraspecial 2-group E2 in the notation of [4, p.405], or
the group N3 in the notation of [13, Table III]. In our discussions, it
will mainly feature as a home for copies of the Pauli group. Thus, we
refer to it as the Pauli hull (§2.2).

Section 2 begins with a reasonably comprehensive description of the
dihedral group D4 as the multiplication group of the quasigroup of
fourth roots of unity in C, with the scalar product xy as the quasigroup
product (§2.1). Using the geometric representation for multiplication
groups of groups, the Pauli hull is presented as the multiplication group
of D4 (§2.2). The Pauli group appears naturally inside the Pauli hull
as the real Clifford algebra unit group D4 ⊙ C4, the unit group of the
real Clifford algebras Cl(3, 0) and Cl(1, 2) [11, §3.7]. The quasigroup-
theoretical description of the Pauli group matches nicely with other
descriptions that are familiar from quantum information theory (§2.3).
In addition, the Pauli hull contains a second real Clifford algebra unit
group, namely D4 × C2, the unit group of Cl(2, 1).

1.2. Quaternions. Whereas Section 2 treated the Pauli hull as the
multiplication group of D4, Section 3 gives a parallel treatment of the
Pauli hull as the multiplication group of the quaternion group Q8. At
first, the geometric representation of group multiplication groups is
used for identification of the quaternion group within the Pauli group
(Proposition 3.1), and to describe the Pauli hull as the multiplication
group of Q8 (§3.2). Table 1 in §3.3 provides a dictionary to correlate
the two geometric representations of the Pauli group inside the Pauli
hull (in terms of D4 and Q8) with its abstract presentation, with its
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Pauli matrix description, and with its occurence as the unit group of
the real Clifford algebra of three-dimensional Euclidean space.

Subsequently, the multivalent representation assumes the primary
role. This is particularly seen in the account of the automorphism
group of the Pauli hull presented in §3.4, based on the identification
of the automorphism group of Q8 with the group of symmetries of the
Bloch octahedron (§3.4.1). As a toy qubit model, the Bloch octahedron
is spanned by 1-qubit stabiliser states (cf. [1, Fig. 4], [7, Fig. 2.1]),
geometrically dual to the quantum cube of [1].

The six vertices of the Bloch octahedron are usually defined in linear-
algebraic terms as eigenspaces of maximal abelian subgroups of the
Pauli group. An alternative view emerges from Theorem 3.19 in §3.5,
which identifies the six copies of the Pauli group that appear in the
Pauli hull as a single orbit under its automorphism group. Table 2
presents their respective central quotients (phase spaces). Table 3
records the combinatorial structure underlying the distribution of the
12 elements of order 4 in the Pauli hull among its six Pauli subgroups.
Finally, Proposition 3.20 identifies the setwise stabiliser of a Pauli sub-
group under the action of the automorphism group of the Pauli hull as
the group D4 × S4 of order 192.

1.3. Future development. The most immediate issue for subsequent
development of this part of our work is to give an account of the Clifford
group X1 (of quantum information theory) [7, §4.1.2], [12, Ex. 6.4.1(1)]
in combinatorial terms. The stabiliser described in Proposition 3.20
has the same order as the (complex) Clifford group X1 (compare [12,
Ex. 6.4.1(1)], for example), but the two groups are not isomorphic. In
particular, unlike X1, the group D4 × S4 has no element of order 8.

2. The extraspecial Pauli hull

2.1. Fourth roots of unity. On the set C4 = {±1,±i } of fourth
roots of unity, a quasigroup structure (C4, ·) is given by (the restriction
of) the complex inner product x · y = x y on C. (In this context, we
use juxtaposition for the usual associative multiplication of complex
numbers). Note that C2 = {±1 } forms a subgroup of the quasigroup
(C4, ·). Also, throughout, note that p2 = p2 for p ∈ C4. The following
theorem essentially represents the special case d = 4 of [10, Prop. 2.1.4],
which identified a general finite dihedral groupDd of degree d (and thus
of order 2d) as the multiplication group of the quasigroup of integer
residues modulo d under subtraction. However, in the present context,
an exponential map has been applied to give a multiplicative version of
the subtraction quasigroup on Z/4, and for subsequent reference it will



4 B. IM AND J.D.H. SMITH

be useful to have a full record of the resulting multiplicative version of
[10, Prop. 2.1.4].

Theorem 2.1. Consider the group D4 = Mlt(C4, ·).
(a) The composition relations (in diagrammatic notation reading from
left to right)

(2.1)

R(q) L(q)

R(p) R(pq) L(pq)

L(p) L(p q) R(p q)

hold for p, q in C4.

(b) In Mlt(C4, ·), the identity element is R(1), while

(2.2) R(q)−1 = R(q) and L(q)−1 = L(q)

for each element q of C4.

(c) The multiplication group of (C4, ·) is the union L(C4) ∪R(C4).

(d) The subsets L(C4) and R(C4) of the multiplication group Mlt(C4, ·)
are disjoint.

(e) There is an exact sequence

{ 1 } // C4
R // Mlt(C4, ·) // C2

// { 1 }

L(q) � // −1

of groups, split by C2 → Mlt(C4, ·);−1 7→ L(1).

(f) Conjugation relations g ↑ h := gh = h−1gh in Mlt(C4, ·) are given
by

(2.3)

↑ R(q) L(q)

R(p) R(p) R(p)

L(p) L(p q2) L(q2 p)

for p, q in C4.

(g) Commutators [g, h] = g−1+h := g−1gh = g−1h−1gh in Mlt(C4, ·) are
given by

(2.4)

[ , ] R(q) L(q)

R(p) R(1) R(p2)

L(p) R(q2) R(p2q2)
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for p, q in C4.

(h) The conjugacy classes of Mlt(C4, ·) are given by

(2.5) R(p)Mlt(C4,·) = {R(p), R(p) }
and

(2.6) L(p)Mlt(C4,·) = { L(±p), L (± p ) }
for each element p of C4.

(i) The set {R(±1) } forms the center ZMlt(C4, ·) and the commutator
or derived subgroup Mlt(C4, ·)′ of Mlt(C4, ·).
(j) Complex conjugation induces an outer automorphism

Mlt(C4, ·) → Mlt(C4, ·);R(p) 7→ R(p) , L(p) 7→ L(p)

of Mlt(C4, ·).

Proof. (a): The relations expressed in (2.1) are verified by

p x q p q x x pq x p q

p x
_
R(q)

OO

_

L(q)

��

x �
R(p)

//
< R(pq)

>>||||||||�

L(p q)
aaBBBBBBBB

�L(p)
oo =

R(p q)

~~}}
}}
}}
}} �

L(pq)   A
AA

AA
AA

A x p
_
R(q)

OO

_

L(q)

��
q p x x p q pq x q x p

The statements (b)–(g) then follow directly, in sequence. Consider, say,

L(p)R(q) (2.2)
= R(q)L(p)R(q)

(2.1)
= L(q p)R(q)

(2.1)
= L(q p q) = L(p q2) = L(p q2)

for p, q ∈ C4, confirming the bottom left entry of the body of the table
(2.3).

(h): The equation (2.5) is immediately apparent from the top row of
the body of the table (2.3). Now consider a left multiplication L(p).
The containment

L(p)Mlt(C4,·) ⊆ { L(±p), L (± p ) }
is immediately apparent from the bottom row of the body of the table
(2.3). The converse follows by considering the bottom row of the body
of the table (2.3), with q = 1, i.

(i): By (2.6), no left multiplication is central. Thus in specifying the
center, it suffices to restrict attention to the right multiplications R(p).
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By (2.5), the conjugacy class of a right multiplicationR(p) is a singleton
iff p is real. The remaining statement follows by (2.4).

(j) is a direct consequence of (2.1), since p q = pq and p q = pq. □

Remark 2.2. In [11, Table 4], the elements of D4 were displayed in its
Mlt(C4, ·) guise as units within the negative type real Clifford algebra
Cl(2, 0) and the positive type real Clifford algebra Cl(1, 1).

2.2. The Pauli hull as a multiplication group. The Pauli hull
is defined to be the central square D4 ⊙ D4 of the dihedral group of
degree 4. It is the extraspecial 2-group E2 in the notation of [4, p.405],
or the group N3 in the notation of [13, Table III]. Recall that D4 is the
multiplication group of the complex inner product quasigroup (C4, ·)
on the set of fourth roots of unity, according to Theorem 2.1. The
Pauli hull is then recognized by [11, Th. 2.14] as the multiplication
group of Mlt(C4, ·). In turn, [11, Prop. 2.13] suggests a quasigroup-
theoretical normal form for elements of the Pauli hull, given in §2.2.2
after an initial abstract summary of the groups under discussion. The
quasigroup-theoretical normal forms fit nicely with many subgroups of
the Pauli hull, most notably the Pauli group itself (§2.2.4).

2.2.1. The abstract groups. In the following proposition, relations on
the groups are specified by words which equate to the identity element.

Proposition 2.3. The groups D4, D4⊙C4, and D4⊙D4 have abstract
presentations as follows.

(a) The group D4 is generated by elements x0, x1 subject to the set

R0 = {x2
0 , x4

1 , (x0x1)
2 }

of relations.
(b) The group D4⊙C4 is generated by elements x1, x2, x3 subject to

the set

R1 = {x4
1 , x2

2 , x2
3x

2
1 , [x1, x2] , [x1, x3] , x−1

3 x2x
2
1x3x2 }

of relations.
(c) The group D4⊙D4 is generated by elements x0, x1, x2, x3 subject

to the union of R0 ∪R1 with the set

R2 = { [x0, x3] }

of relations.
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2.2.2. The Pauli hull.

Definition 2.4. For an element p of C4, consider the respective left
and right multiplications L(p), R(p) by p in the complex inner product
quasigroup (C4, ·). Then define

TL(p) : = T (L(p)) , TR(p) := T (R(p))(2.7)

RL(p) : = R (L(p)) , RR(p) := R (R(p)) ,

as abbreviated forms for the corresponding elements of the Pauli hull.

Lemma 2.5. The relations

(2.8) TR(p) = TR(−p) and TL(p) = TL(−p)

hold for p ∈ C4.

Proof. The statement follows from Theorem 2.1(f). □

In view of Lemma 2.5, we often write TR(±p) and TL(±p) for the
respective common values of the expressions in (2.8).

Theorem 2.6. Consider the Pauli hull as the multiplication group of
the multiplication group of the complex inner product quasigroup on the
set of fourth roots of unity.

(a) It forms the set

{TR(±p)RR(q), TR(±p)RL(q), TL(±p)RR(q), TL(±p)RL(q) }

where p and q range over all the elements of C4. Since there
are 2 choices for the pairs ±p and 4 choices for the elements q,
the given description of the Pauli hull exhibits its cardinality of
32 = 4× 2× 4.
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(b) Its multiplication table is given by

TR(p2)RR(q2) TR(p2)RL(q2)

TR(p1)RR(q1) TR(p1p2)RR(q1q2) TR(p1p2)RL(q1q2)

TR(p1)RL(q1) TR(p1p2)RL(p22 q1 q2) TR(p1p2)RR(p22 q1 q2)

TL(p1)RR(q1) TL(p1 p2)RR(q1q2) TL(p1 p2)RL(q1q2)

TL(p1)RL(q1) TL(p1 p2)RL(p22 q1 q2) TL(p1 p2)RR(p22 q1 q2)

TL(p2)RR(q2) TL(p2)RL(q2)

TR(p1)RR(q1) TL(p1p2)RR(q1 q2) TL(p1p2)RL(q1 q2)

TR(p1)RL(q1) TL(p1p2)RL(p22 q1q2) TL(p1p2)RR(p22 q1q2)

TL(p1)RR(q1) TR(p1 p2)RR(q1 q2) TR(p1 p2)RL(q1 q2)

TL(p1)RL(q1) TR(p1 p2)RL(p22 q1q2) TR(p1 p2)RR(p22 q1q2)

for pi, qi ∈ C4, with identity element TR(1)RR(1).
(c) Inversion in the group is given by

TR(p)RR(q)−1 = TR(p)RR(q) ,

TR(p)RL(q)−1 = TR(p)RL(p2q) ,

TL(p)RR(q)−1 = TL(p)RR(q) ,

TL(p)RL(q)−1 = TL(p)RL(p2 q) .

(d) The group has a faithful transitive permutation representation
of degree 8.



UNIT GROUPS OF CLIFFORD ALGEBRAS II 9

(e) Conjugation relations g ↑ h := gh = h−1gh within the Pauli hull
are given by

↑ TR(p2)RR(q2) TR(p2)RL(q2)

TR(p1)RR(q1) TR(p1)RR(q1) TR(p1)RR(p21 q1)

TR(p1)RL(q1) TR(p1)RL(p22q1q
2
2) TR(p1)RL(p21 p

2
2 q1q

2
2)

TL(p1)RR(q1) TL(p1p
2
2)RR(q1q

2
2) TL(p1p

2
2)RR(p21 q1 q

2
2)

TL(p1)RL(q1) TL(p1p
2
2)RL(p22 q1) TL(p1p

2
2)RL(p21 p

2
2 q1)

↑ TL(p2)RR(q2) TL(p2)RL(q2)

TR(p1)RR(q1) TR(p1)RR(q1) TR(p1)RR(p21 q1)

TR(p1)RL(q1) TR(p1)RL(p22 q1 q22) TR(p1)RL(p21 p
2
2 q1q

2
2)

TL(p1)RR(q1) TL(p1 p
2
2)RR(q1 q

2
2) TL(p1 p

2
2)RR(p21 q1q

2
2)

TL(p1)RL(q1) TL(p1p
2
2)RL(p22 q1) TL(p1 p

2
2)RL(p21 p

2
2 q1)

In particular, the center is {TR(±1)RR(±1) }.
(f) Commutators [g, h] = g−1+h := g−1gh = g−1h−1gh within the

Pauli hull are given by

[ , ] TR(p2)RR(q2) TR(p2)RL(q2)

TR(p1)RR(q1) TR(1)RR(1) TR(1)RR(p21q
2
1)

TR(p1)RL(q1) TR(1)RR(p22q
2
2) TR(1)RR(p21p

2
2q

2
1q

2
2)

TL(p1)RR(q1) TR(p22)RR(q22) TR(p22)RR(p21 q
2
1 q

2
2)

TL(p1)RL(q1) TR(p22)RR(p22) TR(p22)RR(p21 p
2
2 q

2
1)

[ , ] TL(p2)RR(q2) TL(p2)RL(q2)

TR(p1)RR(q1) TR(p21)RR(q21) TR(p21)RR(p21)

TR(p1)RL(q1) TR(p21)RR(p22q
2
1q

2
2) TR(p21)RR(p21p

2
2q

2
2)

TL(p1)RR(q1) TR(p21p
2
2)RR(q21q

2
2) TR(p21p

2
2)RR(p21q

2
2)

TL(p1)RL(q1) TR(p21p
2
2)RR(p22q

2
1) TR(p21p

2
2)RR(p21p

2
2)

In particular, the derived subgroup is {TR(±1)RR(±1) }.
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Proof. (a) This part follows by [11, Prop 2.13(a)]

(b) Using [11, (2.6)], we have

T (h1)R(g1)T (h2)R(g2) = T (h1h2)R
(
gh2
1 g2

)
in the notation of Theorem 2.1(f). Theorem 2.1(a),(f) then supplies
the computations required to complete the multiplication table.

(c) The statements follow from the multiplication tables in (b).

(d) The statement follows immediately by [11, Prop. 2.9].

(e), (f): The tables are obtained using (c) and the multiplication table
from (b). □

2.2.3. The subgroup D4 × C2. In this section, recall that the group
D4 × C2 is the unit group of the real Clifford algebra Cl(2, 1) [11,
Table 2].

Proposition 2.7. Within the Pauli hull, the subset

(2.9) {TR(±p)RR(q), TL(±p)RR(q) | p, q ∈ C4 }
of order 16 forms a subgroup.

Proof. In the tables of Theorem 2.6(b), consider the first columns, with
TR(p2)RR(q2) and TL(p2)RR(q2) as their respective labels. In each
table, restrict consideration to the respective first and third rows. Then
the corresponding entries of the bodies of the tables are seen to lie in
the subset (2.9). Indeed, the multiplication table

(2.10)

TR(p2)RR(q2) TL(p2)RR(q2)

TR(p1)RR(q1) TR(p1p2)RR(q1q2) TL(p1p2)RR(q1 q2)

TL(p1)RR(q1) TL(p1 p2)RR(q1q2) TR(p1 p2)RR(q1 q2)

is obtained. □

Corollary 2.8. Consider the subgroup described in Proposition 2.7.

(a) Powers in the subgroup are given by

TL(p)RR(q)2 = TR(1)RR(1)

and

(2.11) TR(p)RR(q)n = TR(pn)RR(qn)

for all integers n.
(b) There are 4 elements of order 4. It follows that the subgroup is

isomorphic to D4 × C2 [6, pp.39,150], [13, Table II].
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Proof. (a) The first statement is obtained as an immediate consequence
of the multiplication table (2.10). The second statement follows by
induction on n.

(b) Note {
TR(±i)RR(±i)2 = TR(±1)RR(−1) and

TR(±1)RR(±i)2 = TR(±1)RR(−1)
(2.12)

by (a). Other elements square to the identity. □

2.2.4. The Pauli subgroup. In this section, recall that the Pauli group
D4 ⊙ C4 is the unit group of the real Clifford algebras Cl(3, 0) and
Cl(1, 2) — [11, Table 5].

Proposition 2.9. Within the Pauli hull, the subset

(2.13) {TR(±p)RR(q), TR(±p)RL(q) | p, q ∈ C4 }
of order 16 forms a subgroup.

Proof. In (2.13), there are 2 choices for TR(±p), and 4 choices for
q, yielding (2 × 4) + (2 × 4) = 16 elements altogether. The (closed)
multiplication table for these elements is given by the top fragment

TR(p2)RR(q2) TR(p2)RL(q2)

TR(p1)RR(q1) TR(p1p2)RR(q1q2) TR(p1p2)RL(q1q2)

TR(p1)RL(q1) TR(p1p2)RL(p22 q1 q2) TR(p1p2)RR(p22 q1 q2)

of the first table of Theorem 2.6(b). □

Corollary 2.10. Consider the subgroup described in Proposition 2.9.

(a) Powers in the subgroup are given by

TR(p)RL(q)2 = TR(p2)RR(p2) , TR(p)RL(q)4 = TR(1)RR(1)

together with (2.14) below, and

TR(p)RR(q)n = TR(pn)RR(qn)

for all integers n.
(b) Inversion in the subgroup is given by

(2.14) TR(p)RL(q)−1 = TR(p)RL(p2q)

and

TR(p)RR(q)−1 = TR(p)RR(q)

for all integers n.
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(c) Conjugation relations g ↑ h := gh = h−1gh within the subgroup
are given by

↑ TR(p2)RR(q2) TR(p2)RL(q2)

TR(p1)RR(q1) TR(p1)RR(q1) TR(p1)RR(p21 q1)

TR(p1)RL(q1) TR(p1)RL(p22q1q
2
2) TR(p1)RL(p21 p

2
2 q1q

2
2)

In particular, the center is {TR(p)RR(p) | p ∈ C4 }.
(d) Commutators [g, h] = g−1+h := g−1gh = g−1h−1gh within the

subgroup are given by

[ , ] TR(p2)RR(q2) TR(p2)RL(q2)

TR(p1)RR(q1) TR(1)RR(1) TR(1)RR(p21q
2
1)

TR(p1)RL(q1) TR(1)RR(p22q
2
2) TR(1)RR(p21p

2
2q

2
1q

2
2)

In particular, the derived subgroup is {TR(1)RR(±1) }.
(e) There are 8 elements of order 4.
(f) The subgroup (2.13) exhibited by Proposition 2.9 is the Pauli

group C4 ⊙D4.

Proof. (a), (b): In each case, the first statement is obtained as an
immediate consequence of the multiplication table from the proof of
Proposition 2.9, while the second statements recall (2.11).

(c), (d): The tables are obtained using (b) and the multiplication table
from the proof of Proposition 2.9. In connection with the specification
of the center, note that p22q

2
2 = 1 if p2 = q2.

(e): Four elements with non-trivial squares are exhibited by (2.12).
The computations{

TR(±i)RL(±i)2 = TR(±1)RR(−1) and

TR(±i)RL(±1)2 = TR(±1)RR(−1)

exhibit the remaining four.

(f): By (c), the center is C4. By (e), there are eight elements of order
four. The only group of order 16 with 8 elements of order four and
with C4 as its center, appearing as a subgroup of the Pauli hull, is the
Pauli group [6, pp.39,150], [13, Table II]. □

2.3. Fourth roots of unity and the Pauli group. According to
Corollary 2.10(f), the subgroup

{TR(±p)RR(q), TR(±p)RL(q) | p, q ∈ C4 }



UNIT GROUPS OF CLIFFORD ALGEBRAS II 13

of the Pauli hull exhibited in quasigroup-theoretical terms by (2.13) is
the Pauli group. The goal of this section is to correlate the quasigroup-
theoretical description of the Pauli group with other descriptions that
are more familiar in quantum information theory.

2.3.1. Recognizing the Pauli group. The center of the Pauli group G1 is
{ pI | p ∈ C4 }, so in order to make a connection with the multiplication
group notation, the first identification to be made is

(2.15) pI = TR(p)RR(p)

for p ∈ C4 using Corollary 2.10(c).
In both the negative and the positive parts of [11, Table 4], the Pauli

matrixX, appearing there as e1, was identified with L(1). This element
of D4 embeds into the Pauli hull as RL(1) = TR(±1)RL(1), so we may
identify

(2.16) x1 = i = TR(i)RR(i) and x2 = X = TR(1)RL(1)

invoking the abstract presentation of Proposition 2.3(b). An element
x3 of order 4 must then be found to yield x2x3x2 = x2

1x3. In the positive
part of [11, Table 4], we have f2 of order 4 with e1f2e1 = −f2, identified
with R(±i), so we may take

(2.17) x3 = iY = TR(1)RR(i)

and

Y = −i(iY ) = TR(−i)RR(−i)TR(1)RR(i) = TR(−i)RR(1) .

Finally, Z = −i(XY ) or

Z = X(−iY ) = TR(1)RL(1)TR(1)RR(−i) = TR(1)RL(i) .

We may summarize as follows.

Proposition 2.11. Setting

(2.18) X = TR(1)RL(1) , Y = TR(i)RR(1) , Z = TR(1)RL(i)

along with (2.15) interprets the quantum information-theoretic Pauli
group [11, (3.26)] within the quasigroup-theoretical version (2.13).

Remark 2.12. The specifications (2.18) may be recorded as

X = RL(1) , Y = TR(i) , Z = RL(i)

in abbreviated form. Thus, the bit flip X is the image of the dihedral
reflexion L(1) in the multiplication group, while the phase flip Z is the
image of the dihedral reflexion L(i).
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2.3.2. The abstract presentation. The previous section called upon the
abstract presentation of Proposition 2.3(b) to identify the quantum
information-theoretic and quasigroup-theoretic versions of the Pauli
group. In this section, we directly verify that the multiplication group
elements chosen there do satisfy the required relations. In particular,
this reconfirms the assertion of Corollary 2.10(f), at that point justified
on the basis of the known subgroup structure of the Pauli hull (i.e.,
the extraspecial group of order 32) [6, p.150], that the Pauli subgroup
(2.13) exhibited by Proposition 2.9 is indeed the Pauli group C4 ⊙D4.

Proposition 2.13. The relations

x4
1 = x2

2 = 1 , x2
1 = x2

3 ,(2.19)

[x1, x2] = [x1, x3] = 1 ,(2.20)

x2x3x2 = x2
1x3(2.21)

are satisfied by

x1 = TR(i)RR(i) , x2 = TR(1)RL(1) , x3 = TR(1)RR(i)

in the Pauli subgroup.

Proof. The power relations (2.19) are obtained as direct consequences
of Corollary 2.10(a). For example,

x2
1 = TR(−1)RR(−1) = TR(1)RR(−1) = x2

3 .

The commutation relations (2.20) follow by Corollary 2.10(c). For
(2.21), we have

x2x3x2 = TR(1)RR(i) ↑ TR(1)RL(1) = TR(1)RR(−i)

from the conjugation table in Corollary 2.10(c), and again

x2
1x3 = TR(i)RR(i)2TR(1)RR(i)

= TR(−1)RR(−1)TR(1)RR(i) = TR(−1)RR(−i) .

The second equation uses Corollary 2.10(a), while the third uses the
multiplication table of Corollary 2.10(b). □

2.3.3. The Cayley diagram. By Theorem 2.6(d), the extraspecial Pauli
hull MltD4 has a faithful natural transitive permutation representation
of degree 8 on the multiplication group D4 = Mlt(C4, ·) of the complex
inner-product quasigroup (C4, ·). The restriction of this permutation
representation to the Pauli subgroup of the Pauli hull provides a faithful
transitive permutation representation of the Pauli group, which will
be presented here using the quantum information-theoretic generators
X,Z and iI identified in Proposition 2.11.
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Theorem 2.14. The Cayley diagram of the Pauli group with respect to
right actions of the generating set {X,Z, iI }, including the involutions
X,Z, is given as

(2.22) R(i)
X

L(i)

Z

EE
EE

EE
EE

EE
EE

EE
EE

EE

L(−1)

Z

xxxxxxxxxxxxxxxxxx

X

R(1)

X

R(−1)

Z

FF
FF

FF
FF

FF
FF

FF
FF

FF
L(1)

Z

yy
yy
yy
yy
yy
yy
yy
yy
yy

L(−i)
X

R(−i)

together with the rotation actions

(2.23) iI : R(p) 7→ R(ip) , L(p) 7→ L(ip)

for p ∈ C4.

Proof. Towards (2.23), note that

R(p)TR(i)RR(i) = R(p)LR(i)−1RR(i)RR(i)

= R(−i)R(p)R(−1) = R(ip)

and

L(p)TR(i)RR(i) = L(p)LR(i)−1RR(i)RR(i)

= R(−i)L(p)R(−1) = L(ip)

for p ∈ C4. The other computations are straightfoward. They use
the identifications of Proposition 2.11 and the multiplication table of
Theorem 2.1(a). □

Remark 2.15. The Cayley diagram (2.22) may be envisaged as being
located in the complex plane, where each single complex number p
from C4 appears with two distinct chiral representations L(p) and R(p).
The rotation actions (2.23) then correspond to multiplication by i, the
counterclockwise rotation of the complex plane by π/2.
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2.3.4. Central quotients. By Theorem 2.1(a), the set

(2.24) {R(±1), L(±1) }
forms a Klein 4-subgroup of D4 = Mlt(C4, ·).

Proposition 2.16. (a) There is a surjective group homomorphism

(2.25) Mlt(C4, ·) → {R(±1), L(±1) } ;R(p) 7→ R(p2) , L(p) 7→ L(p2)

whose kernel is {R(±1) }.
(b) The Klein 4-group (2.24) is the central quotient of D4 = Mlt(C4, ·).

Proof. (a) Theorem 2.1(a) yields a direct verification that the mapping
(2.25) is a group homomorphism. Taking p = 1 and p = i shows that
the mapping is surjective. Finally, note that {R(±1) } is the preimage
of the identity element R(1) of D4 = Mlt(C4, ·).
(b) By Theorem 2.1(i), we have ZMlt(C4, ·) = {R(±1) }. Thus, by
the First Isomorphism Theorem, (2.24) represents the central quotient
Mlt(C4, ·)/ZMlt(C4, ·) of Mlt(C4, ·). □

Theorem 2.17. (a) There is a surjective group homomorphism

θ : {TR(±p)RR(q), TR(±p)RL(q) | p, q ∈ C4 } → {R(±1), L(±1) } ;

TR(±p)RR(q) 7→ R(p2q2) , TR(±p)RL(q) 7→ L(p2q2)

(2.26)

whose kernel is {TR(p)RR(p) | p ∈ C4 }.
(b) The Klein 4-group (2.24) is the central quotient of the Pauli sub-
group.

Proof. (a) Note that

TR(±p1p2)RR(q1q2)
θ = TR(±p1p2)RR(p22 q1 q2)

θ = R(p21p
2
2q

2
1q

2
1)

and

TR(±p1p2)RL(q1q2)
θ = TR(±p1p2)RL(p22 q1 q2)

θ = R(p21p
2
2q

2
1q

2
1) .

By the top fragment of the multiplication table of Theorem 2.6(b),
together with Theorem 2.1(a), it is then apparent that θ is a group
homomorphism. Taking p = 1, and q = 1 or q = i in (2.26), shows that
θ is surjective. Furthermore, the containment

(2.27) {TR(p)RR(p) | p ∈ C4 } ⊆ Ker θ

is immediate from (2.26). By the First Isomorphism Theorem, we have
16
/
|Ker θ| = 4 or |Ker θ| = 4. The containment (2.27) is thus seen to

be improper, as required.
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(b) By Corollary 2.10(c), the set {TR(p)RR(p) | p ∈ C4 } is the center
of the Pauli subgroup. Thus, by the First Isomorphism Theorem, (2.24)
represents the central quotient of the Pauli subgroup. □

2.4. The Heisenberg group interpretation. Section 2.3.4 presented
direct syntactical verifications, in terms of multiplication groups, that
the central quotients of both D4 and the Pauli group are isomorphic
to the Klein 4-group, modeled by the subgroup (2.24) of D4. We now
take a geometric approach to these common central quotients: as a
classical phase space, leading to the identification of the Pauli group
as a Heisenberg-Weyl group [5, §0.2], [15, §IV.D].

Here, we will recognize the central quotient of a group Q as the space
Qζ of equivalence classes of the center congruence ζ(Q) (or just ζ) of
Q, recalling that the center congruence ζ(Q) is the largest subgroup

of Q2 normalizing the diagonal subgroup Q̂ = { (q, q) | q ∈ Q } [14,

§3.2]. The normality of Q̂ in ζ means that Q̂ is an equivalence class
of a (unique) centering congruence W on ζ [14, Prop. 3.4]. While the
center congruence makes sense in any quasigroup, it takes a special
form in a group Q. In this situation, the equivalence classes qζ(Q) are
the cosets qZ(Q) = Z(Q)q of the center Z(Q), for q ∈ Q.

Recalling from Theorem 2.1(i) that the center of D4 = Mlt(C4, ·) is
R(±1), the ζ-classes of D4 are given as the antipodal pairs

(2.28) {R(±1) } , {R(±i) } , {L(±1) } , {L(±i) }

in the Cayley diagram (2.22) of the Pauli group. Thus, even though D4

is not a quotient group of the Pauli group, our quasigroup-theoretical
approach provides a quotient relationship at the graph-theoretical level.
Involutive actions of Pauli generators by right multiplication on the set
of antipodal pairs in (2.22) are given by the central part of

(2.29) (0, 1) // L(±i)
X

Z

ZX

R(±i)

Z

(1, 1)oo

(0, 0) // R(±1)
X

L(±1) (1, 0)oo

with an abbreviated notation omitting the braces from the elements
(2.28).

The edge-labeled graph in the middle of (2.29) is obtained as the
quotient of the edge-labeled graph (2.22) resulting from identification
of antipodal vertices. It may be interpreted as the Cayley diagram of
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the Klein 4-group D4/D
′
4. In this way, (2.29) introduces coordinates for

the set Dζ
4 of four central classes taken from the set { 0, 1 }2 = (Z/2)2,

recognizing the configuration as the classical phase space for a single
qubit [16, §3]. The first component u1 of a binary vector u = (u1, u2)
corresponds to a (generalized) position, while the second component
u2 corresponds to a (generalized) momentum in terms of Hamiltonian
mechanics. The 3 edge classes inside the Cayley diagram (2.29), drawn
respectively as doubled, single, dotted, and labelled respectively by
X,Z, ZX, are the three striations of [16, Fig. 4].

It should be noted from Theorem 2.1(i) that the commutator map

D4 ×D4 → D′
4 = Z(D4); (x, y) 7→ [x, y]

descends to a scalar product

(2.30) D4/D
′
4 ×D4/D

′
4 → Z(D4); (x

ζ , yζ) 7→ [x, y]

tabulated by (2.4) (compare [4]). Identifying the ζ(D4)-classes by their
phase space coordinates in (Z/2)2, and recognizing Z(D4) as Z/2, the
form

(2.31) ω : (Z/2)2 × (Z/2)2 → Z/2;
(
(u1, u2), (v1, v2)

)
7→ u1v2 + u2v1

may be used to rewrite the scalar product (2.30).
We now turn to the Pauli group G1. In our multiplication group

interpretation, the center Z(G1) is given as {TR(λ)RR(λ) | λ ∈ C4 }
according to Corollary 2.10(c). Using the top fragment of the first table
of Theorem 2.6(b), as in the proof of Proposition2.9, the four center
congruence classes are then obtained as

TR(±p)RR(q)ζ(G1) = {TR(±λp)RR(λq) | λ ∈ C4 } and

TR(±p)RL(q)ζ(G1) = {TR(±λp)RL(λq) | λ ∈ C4 }

with p, q ∈ C4. Choosing λ = p−1, they may be represented as

TR(±1)RR(1)ζ(G1), TR(±1)RR(i)ζ(G1) ,

TR(±1)RL(1)ζ(G1) , TR(±1)RL(i)ζ(G1) ,

respectively corresponding to the classes

R(±1) , R(±i) , L(±1) , L(±i)

of D4 with their phase space labels from (Z/2)2 as displayed in (2.29).
By virtue of its provenance as a quotient of the Cayley diagram

(2.22) for the Pauli group, the middle part of (2.29) correctly reflects
the action of the Pauli generators on the phase space. Setting

X(0) = Z(0) = 1 , X(1) = X , and Z(1) = Z ,
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and recalling

[Z,X] = [TR(±1)RL(i), TR(±1)RL(1)] = TR(±1)RR(−1)

from Corollary 2.10(d), we recover the description of the Pauli group
as a Heisenberg-Weyl group.

Theorem 2.18. Consider the Pauli group G1 and the phase space Dζ
4.

(a) As a set, G1 = { ijX(u1)Z(u2) | j ∈ Z/4 , u ∈ Dζ
4 }.

(b) The product in G1 is given as

ijX(u1)Z(u2) · ikX(v1)Z(v2) = ij+k+2u2v1X(u1 + u2)Z(u2 + v2) .

(c) The commutator in G1 is given as

[ijX(u1)Z(u2), i
kX(v1)Z(v2)] = (−1)ω(u,v)

with the form (2.31).
(d) Consider the Heisenberg-Weyl element ijX(u1)Z(u2) for u =

(u1, u2) in the phase space Dζ
4.

(i) If u = (0, 0), it corresponds to TR(±ij)RR(ij) in the Pauli
subgroup (2.13).

(ii) If u = (0, 1), it corresponds to TR(±ij)RL(ij+1) in the
Pauli subgroup (2.13).

(iii) If u = (1, 0), it corresponds to TR(±ij)RL(ij) in the Pauli
subgroup (2.13).

(iv) If u = (1, 1), it corresponds to TR(±ij)RR(ij−1) in the
Pauli subgroup (2.13).

(e) (i) Consider the Pauli subgroup element TR(±p)RR(q). Then

TR(±p)RR(q) =

{
qX(0)Z(0) if q ∈ {±p } ;

iqX(1)Z(1) if q /∈ {±p } .

(ii) Consider the Pauli subgroup element TR(±p)RL(q). Then

TR(±p)RL(q) =

{
qX(1)Z(0) if q ∈ {±p } ;

−iqX(0)Z(1) if q /∈ {±p } .

Proof. Parts (a)–(c) are standard computations in the matrix group
[11, (3.26)]. Part (d) follows by computation of

TR(±ij)RR(ij) [TR(±1)RL(1)]u1 [TR(±1)RL(i)]u2

in the Pauli subgroup (2.13) using the first table of Theorem 2.6(b).
Part (e) follows by inversion of part (d). □
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Corollary 2.19. Define

ι : C4 → G1; i
j 7→ TR(±ij)RR(ij)

as the insertion of the center into G1, and

ν : G1 → Gζ
1; g 7→ gζ

as the natural projection onto the phase space. Then the sequence

1 // C4
ι // G1

ν // Gζ
1

// 1

is exact.

3. Quaternions

3.1. The quaternion group within the Pauli group. Although
the quaternion group does not appear as the multiplication group of a
quasigroup (according to [11, Cor. 2.12]), it does appear as a subgroup
of the Pauli group, and may thus be represented in terms of MltD4 as
follows.

Proposition 3.1. The subset Q of the Pauli subgroup consisting of the
elements

TR(±i)RL(±1) , TR(±i)RL(±i) , TR(±1)RR(±i) ,(3.1)

TR(±1)RR(±1)(3.2)

forms a quaternion group. Here, the elements (3.1) have order 4, while
the elements (3.2) are central

Proof. The quaternion group has 6 elements of order 4, none of which
is central. On the other hand, the Pauli group has 8 elements of order
4, as described by Corollary 2.10(e). Of the 4 listed in (2.12), the first
two are central in the Pauli group, by Corollary 2.10(c), and cannot
appear in the quaternion group. The remainder are listed in (3.1),
while (3.2) presents their even powers. □

Corollary 3.2. Since the quaternion subgroup

{±I,±iX,±iY,±iZ }

of the Pauli group G1 consists of all its elements of determinant 1,
the index two subgroup Q of the Pauli subgroup is the kernel of the
determinant homomorphism to C2.
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3.2. The Pauli hull in quaternion terms. In Proposition 3.1, the
quaternion group was expressed as a subgroup of the multiplication
group of the dihedral group D4, the central square D4 ⊙ D4 of the
dihedral group. In order to complete our understanding of the Pauli
group from the standpoint of quasigroup theory, we now take a converse
approach. Since MltD4

∼= D4 ⊙ D4
∼= Q8 ⊙ Q8

∼= MltQ8, we may
investigate the extraspecial Pauli hull as the multiplication group of
the quaternion group.

The following theorem, expressing the extraspecial Pauli hull as the
multiplication group of the quaternion group, forms a counterpart of
Theorem 2.6, which expressed the Pauli hull as the multiplication group
of the dihedral group.

Theorem 3.3. Consider the Pauli hull as the multiplication group of
the quaternion group Q8.

(a) It forms the set

(3.3) {T (±h)R(g) | h, g ∈ Q8 } .

Since there are 4 choices for the pairs ±h, and 8 choices for the
elements g, the given description of the Pauli hull exhibits its
cardinality of 32 = 4× 8.

(b) Its multiplication is given by

T (±h1)R(g1)T (±h2)R(g2) = T (±h1h2)R
(
gh2
1 g2

)
for h1, g1, h2, g2 ∈ Q8.

(c) Inversion in the group is given by T (±h)R(g)−1 = T (±h)R
(
g−h

)
with g−h = (gh)−1.

(d) The group has a faithful permutation representation of degree
8.

(e) Conjugation relations within the Pauli hull are given by

T (±h1)R(g1) ↑ T (±h2)R(g2) = T (h1)R
(
g−h1
2 gh2

1 g2
)

for h1, g1, h2, g2 ∈ Q8. Thus, the center is {T (±1)R(±1) }.
(f) Commutators [g, h] = g−1+h := g−1gh = g−1h−1gh within the

Pauli hull are given by

[T (±h1)R(g1), T (±h2)R(g2)] = T (±1)R
(
g−1
1 g−h1

2 gh2
1 g2

)
for h1, g1, h2, g2 ∈ Q8. In particular, the derived subgroup is
{T (±1)R(±1) }.

(g) An element T (±h)R(g) is of order 4 if and only if gh ̸= g−1.
In particular, there are 12 elements of order 4 in the Pauli hull,
namely

T (±1)R(g) and T (±g)R(g)
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for g /∈ Z(Q8).
(h) There is an injective group homomorphism

(3.4) g 7→ T (±1)R(g)

from Q8 to the Pauli hull.

Proof. (a) This part follows by [11, Prop 2.13(a)].

(b) This part follows directly from [11, (2.6)]

(c) From (b), we have

T (±h)R(g−h)T (±h)R(g) = T (±h2)R(g−h2

g) = T (±1)R(1)

for h, g ∈ Q8, since T (h2) = 1 for h ∈ Q8.

(d) The statement follows immediately by [11, Prop. 2.9].

(e) By (c) and (b), we have T (±h1)R(g1) ↑ T (±h2)R(g2)

=
(
T (±h2)R(g2)

)−1
T (±h1)R(g1)T (±h2)R(g2)

= T (±h2)R(g−h2
2 )T (±h1)R(g1)T (±h2)R(g2)

= T (±h2)R(g−h2
2 )T (±h1h2)R(gh2

1 g2)

= T (h1)R(g−h2h1h2
2 gh2

1 g2) = T (h1)R
(
g−h1
2 gh2

1 g2
)

for h1, g1, h2, g2 ∈ Q8.

(f) By (c), (e) and (b), we have [T (±h1)R(g1), T (±h2)R(g2)]

= T (±h1)R(g1)
−1 · T (±h1)R(g1) ↑ T (±h2)R(g2)

= T
(
±h−1

1

)
R
(
g−h1
1

)
T (±h1)R

(
g−h1
2 g−h2

1 g2
)

= T (±1)R
(
g−1
1 g−h1

2 gh2
1 g2

)
for h1, g1, h2, g2 ∈ Q8.

(g) The first statement follows from (c), since the possible orders for
elements of the extraspecial Pauli hull are 1, 2 and 4.

(h) This part follows directly from (b). □

Theorem 3.3 (and its dihedral group analogue Theorem 2.1) use the
representation of group multiplication group elements that is provided
by [11, Prop. 2.13]. When dealing with the multiplication group of the
quaternion group, however, it is almost always better to employ the
multivalent notation. This notation works well with the quaternion
group Q8 = {±1,±i,±j,±k }, since its center is {±1 }. We begin
with an analysis of the elements of order 4 in the Pauli hull MltQ8,
and their commutation properties.
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Definition 3.4. In the following, g, h ∈ Q8 ∖ Z(Q8).

(a) An element ⟨L′(±1), R(g)⟩ of MltQ8 is of right type.
(b) An element ⟨L′(±h), R(±1)⟩ of MltQ8 is of left type.
(c) An element ⟨L′(h), R(g)⟩ of MltQ8 is of mixed type.
(d) The elements ⟨L′(±1), R(±1)⟩ of MltQ8 are of central type.

Remark 3.5. The types appearing in Definition 3.4 appear as follows
in the notation of [11, Prop. 2.13]:

R: ⟨L′(±1), R(g)⟩ = T (±1)R(g);
L: ⟨L′(±h), R(±1)⟩ = T (±h)R(h);
M: ⟨L′(h), R(g)⟩ = T (±h)R(hg)

(compare [11, Lemma 2.18]).

Lemma 3.6. An element ⟨L′(h), R(g)⟩ of MltQ8 has order 4 if and
only if h2 ̸= g2.

Proof. By [11, Prop. 2.17], we have ⟨L′(h), R(g)⟩2 = ⟨L′(h2), R(g2)⟩.
The latter element is the identity element of MltQ8 if and only if
h2 = g2. □

Lemma 3.7. There are 12 elements of order 4 in MltQ8: 6 of right
type and 6 of left type.

Proof. By Lemma 3.6, the 6 elements ⟨L′(1), R(g)⟩ = ⟨L′(−1), R(−g)⟩
of right type have order 4. Again by Lemma 3.6, the 6 elements
⟨L′(h), R(1)⟩ = ⟨L′(−h), R(−1)⟩ of left type have order 4. On the other
hand, an element ⟨L′(h), R(g)⟩ of mixed type, having h2 = −1 = g2, is
not of order 4. The elements of central type have orders 1 and 2. □

In contrast with the preceding results, the following lemma is based
on the group multiplication group notation of [11, Prop. 2.13(a)].

Lemma 3.8. Suppose g, h ∈ Q8 ∖ Z(Q8), with ⟨g⟩ ̸= ⟨h⟩.
(a) [T (±1)R(g), T (±h)R(h)] = 1 .
(b) [T (±1)R(g), T (±1)R(h)] ̸= 1 .
(c) [T (±g)R(g), T (±h)R(h)] ̸= 1 .

Proof. (a) By Theorem 3.3(f), we have [T (±1)R(g), T (±h)R(h)] =

T (±1)R
(
g−1h−1ghh

)
= T (±1)R

(
g−1h−1hgh−1h

)
= 1 .

Alternatively, one may invoke Remark 3.5 and note the commuting of
right type elements with left type elements, by [11, Prop. 2.17],

(b) By Theorem 3.3(h), we have

[T (±1)R(g), T (±1)R(h)] = T (±1)R ([g, h]) ̸= 1 .
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(c) By Theorem 3.3(f), we have

[T (±g)R(g), T (±h)R(h)] = T (±1)R
(
g−1(h−1)gghh

)
= T (±1)R

(
(g−1gh−1g−1hgh−1h

)
= T (±1)R ([h, g]) ̸= 1 .

In (a) and (c), we freely use results such as h−1gh = hgh−1. □

3.3. The Pauli group dictionary. This section presents Table 1,
which correlates the various descriptions of the Pauli group that have
appeared up to this point in the paper. For the quaternion group
multiplication group descriptions from §3.2 in the third column of the
table, the non-central elements of the quaternion group are written as
±i,±j,±k to distinguish them, say, from phase terms like ±i. The first
column in Table 1 identifies elements with the quantum information
theory notation taken from [11, (3.26)]. The second column records the
dihedral multiplication group descriptions. The fourth column refers
to the abstract presentation from §2.3.2, completed using (2.16) and
(2.17). The critical issue at this stage is to identify a specific abstract
Pauli group within the extraspecial Pauli hull concretely represented
as MltQ8. Later, in §3.5, we provide a more general overview of Pauli
subgroups in MltQ8.

The 1 + 3 + 3 + 1 breakup of the rows in the body of the table
generally corresponds to the column breakup in [11, Table 5], while
the fifth column of Table 1 gives expressions corresponding to the unit
group of the Clifford algebra Cl(3.0). The 8 rows of Table 1 only list
half of the 16 elements of the Pauli group: a transversal in the sense
of [11, Def’n. 3.18]. Representations of the remaining elements, the
negatives of the elements listed, are obtained upon multiplication by
the square of the element appearing in the last row of the table.

The Pauli group elements in the third set of body rows satisfy

(3.5)


(−iX)(iY ) = (iZ) ,

(iY )(iZ) = (−iX) , and

(iZ)(−iX) = (iY )

by [11, (3.27)], and thus generate a quaternion subgroup of the Pauli
group. In our assignment of specific MltQ8 elements to the Pauli group,
we aim to align this quaternion subgroup with the image of the homo-
morphism (3.4) of Theorem 3.3(h). By Lemma 3.8(a), the elements
T (±h)R(h) of MltQ8 centralize the elements of the image. We break
the symmetry of the quaternion generators by choosing T (±i)R(i) as
our specific centralizing element, matching h = i to the phase element
iI in the Pauli group G1. This symmetry-breaking motivates our choice
of −iX as the single “negated” quaternion generator in (3.5).
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Pauli Dihedral Quaternion Abstract Cl(3, 0)

I TR(±1)RR(−1) T (1)R(1) 1 e0

X TR(±1)RL(1) T (±i)R(1) x2 e1

Y TR(±i)RR(1) T (±1)R(−k) x3
1x3 e2

Z TR(±1)RL(i) T (±i)R(j) x2
1x2x3 e3

−iX TR(±i)RL(−i) T (±1)R(i) x1x2 e3e2

iY TR(±1)RR(i) T (±1)R(j) x3 e3e1

iZ TR(±i)RL(−1) T (±1)R(k) x3
1x2x3 e1e2

iI TR(±i)RR(i) T (±i)R(i) x1 e1e2e3 = ω

Table 1. The descriptions of the Pauli group.

Remark 3.9. As noted in connection with the specification of AutQ8

given in §3.4.1 below, the three possible symmetry-breakings involved
in our assignment process correspond nicely with the three possible
choices of a single octahedron from the three that are displayed in [8,
Fig. 9]. Our choice, singling out the quaternion pair ±i, corresponds
to the middle octahedron from that figure.

It is interesting to observe that the same symmetry-breaking occurs
when superalgebra structure is placed on the quaternion algebra, as
discussed in [11, Ex. 3.16].

To verify the correctness of our chosen assignments of quaternion
elements, we have the following analogue of Proposition 2.13.

Proposition 3.10. The relations

x4
1 = x2

2 = 1 , x2
1 = x2

3 ,(3.6)

[x1, x2] = [x1, x3] = 1 ,(3.7)

x2x3x2 = x2
1x3(3.8)

are satisfied by

x1 = T (±i)R(i) , x2 = T (±i)R(1) , x3 = T (±1)R(j)

in the Pauli subgroup.

Proof. The power relations (3.6) follow by Theorem 3.3(c) and (g).
The commutation relations (3.7) hold by Lemma 3.8(a). Note that the
lemma explicitly gives the commuting of x1 with x1x2, from which the
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first relation of (3.7) immediately follows. Finally, by (3.6), we have
x2x3x2 = xx2

3 . Theorem 3.3(e) shows that

T (±1)R(j) ↑ T (±i)R(1) = T (±1)R(−j) .

Theorem 3.3(c) now gives T (±1)R(j)−1 = T (±1)R(−j), confirming
that x2x3x2 = x−1

3 = x2
1x3 as required for (3.8). □

3.4. Automorphisms of the Pauli hull. A comparison of the two
respective quasigroup-theoretical descriptions of the extraspecial Pauli
hull given by Theorems 2.6 and 3.3 is instructive. The former is more
basic: it reduces computations down to multiplication and conjugation
of complex numbers. On the other hand, while the latter is more
elegant and conceptual, its computations do involve multiplication and
conjugation (this time, in the group-theoretical sense!) of quaternions.
The value of the quaternion group approach is best seen in its efficient
description of the 1152 automorphisms of the extraspecial Pauli hull in
multiplication group terms (Theorem 3.16 below). Remark 3.17 notes
that D4 could not serve as the basis for a similar description.

3.4.1. Automorphisms of the quaternion group. The following result is
well known (cf. [8, §3.4]). The proof presented here uses the geometric
idea from [8] of encoding group products as cyclic orderings of vertices
of the faces of a triangulation of an oriented 2-manifold. However, while
the general method of [8] uses three (boundaries of) octahedra for Q8,
a single octahedron suffices for our current purpose. It will nevertheless
transpire that selection of a single octahedron from the triple appearing
in [8, Fig. 9] exactly tracks the symmetry-breaking discussed in §3.3
below (see Remark 3.9).

Proposition 3.11. Consider the quaternion group Q8.

(a) Each automorphism of Q8 fixes −1.
(b) The automorphism group of Q8 is the symmetric group S4.

Proof. (a) The element −1 is fixed by automorphisms, since it is the
unique element of order 2.

(b) By (a), the effect of automorphisms of Q8 is determined on its
subset

V = {±i,±j,±k }
of 6 elements of order 4. Consider the octahedron that is the convex
hull of these elements in the underlying three-dimensional real vector
space consisting of the purely imaginary quaternions. Thus, V is the
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vertex set of an octahedron:
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The octahedron’s faces are the 8 triangles that are the convex hulls of
linearly independent subsets of V . When the octahedron is oriented by
outbound normals to these faces, the set of vertices of each face, such
as i, j,k is oriented in cyclic counterclockwise order i∧ j∧k around its
outbound normal. An orientation of each edge of the face is induced,
following this cyclic order.

This geometry encodes the non-trivial products in Q8, namely those
that are not witnessed by an abelian subgroup. Given an ordered
linearly independent pair of elements of V , say k < i, the given ordering
on that pair is induced from the cyclic counterclockwise ordering of the
vertices of a unique face: in this case k∧ i∧j = i∧j∧k. The product of
the ordered linearly independent pair is then given by the third vertex
of the face: in this case, k.

It follows that the automorphism group of Q8 is the symmetry group
of the oriented octahedron, namely S4 as the group of permutations of
the 4 pairs of distinct closed faces of (3.9). □

Remark 3.12. (a) Our use of exterior algebra notation, such as i∧j∧k
for the oriented convex hull of { i, j,k }, follows [2, §IV.4], reprinted as
[3, p.62].

(b) Consider a rotation by 2π/3 of the octahedron (3.9) about the axis
joining the barycenters of the opposite faces i∧ j∧k and −k∧−j∧−i.
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This octahedron symmetry realizes the outer automorphism

(3.10) θ3 = (i j k)(−i − j − k)

of Q8.

(c) Consider a rotation by π of the octahedron (3.9) about the axis
joining the barycenters of the opposite edges i ∧ j and −j ∧ −i. This
octahedron symmetry realizes the outer automorphism

(3.11) θ2 = (k − k)(i j)(−i − j)

of Q8.

(d) The conjugations

(3.12) T (j) = (k − k)(i − i) and T (k) = (i − i)(j − j)

generate the inner automorphism group C2×C2 of Q8. Note that T (k)
is the restriction of the involution automorphism of the Clifford algebra
Cl(0, 2) to Q8 as its unit group displayed in [11, Table 3].

(e) The 8-element subgroup of AutQ8 that is generated by the outer
automorphism θθ32 = (i − i)(j k)(−j −k) and the inner automorphisms
(3.12) stabilizes the maximal abelian subgroup ⟨i⟩ setwise. Since the
outer automorphism conjugates T (j) to T (k) in AutQ8, the stabilizer
is isomorphic to C2 ≀ C2

∼= D4.

(f) The polytope (3.9) may be interpreted as an instance of the Bloch
octahedron spanned by 1-qubit stabiliser states (cf. [1, Fig. 4], [7,
Fig. 2.1]), geometrically dual to the quantum cube of [1]. While the
vertices of the Bloch octahedron are usually defined in linear-algebraic
terms as eigenspaces of maximal abelian subgroups of the Pauli group,
our subsequent treatment of the Pauli subgroups of MltQ8 will offer
more direct interpretations.

3.4.2. Automorphisms of the quaternion multiplication group. In this
section, we will generally track elements of MltQ8 using the multivalent
representation.

Proposition 3.13. Let θ and ϕ be automorphisms of Q8. Then

(3.13) (θ, ϕ) : ⟨L′(h), R(g)⟩ 7→ ⟨L′(hθ), R(gϕ)⟩
gives a well-defined automorphism of MltQ8.

Proof. Consider a central element z of Q8. By Proposition 3.11(a), we
have zθ = z = zϕ. Now

(θ, ϕ) : ⟨L′(hz), R(gz)⟩ 7→ ⟨L′((hz)θ), R((gz)ϕ)⟩ = ⟨L′(hθzθ), R(gϕzϕ)⟩
= ⟨L′(hθz), R(gϕz)⟩ = ⟨L′(hθ), R(gϕ)⟩ ,
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so that (3.13) is well-defined. Note then that (θ, ϕ) : MltQ8 → MltQ8

is invertible, with inverse (θ−1, ϕ−1).
Finally, for elements h1, h2, g1, g2 and automorphisms θ, ϕ of Q8, we

have ⟨L′(h1), R(g1)⟩(θ,ϕ) ⟨L′(h2), R(g2)⟩(θ,ϕ)

= ⟨L′(hθ
1), R(gϕ1 )⟩ ⟨L′(hθ

2), R(gϕ2 )⟩ = ⟨L′(hθ
1h

θ
2), R(gϕ1 g

ϕ
2 )⟩

= ⟨L′((h1h2)
θ), R((g1g2)

ϕ)⟩ = ⟨L′(h1h2), R(g1g2)⟩(θ,ϕ) ,
so that (θ, ϕ) is an automorphism of MltQ8. □

Definition 3.14. For automorphisms θ, ϕ of Q8, the automorphisms
(θ, ϕ) of MltQ8 given by (3.13) are said to be internal.

Proposition 3.15. The set

Π = { (θ, ϕ) | θ, ϕ ∈ AutQ8 }
of internal automorphisms of MltQ8 forms a subgroup of AutMltQ8

of order 242, isomorphic to the direct square of AutQ8.

Proof. For internal automorphisms (θ1, ϕ1) and (θ2, ϕ2), we have

⟨L′(h), R(g)⟩ (θ1, ϕ1)(θ2, ϕ2) = ⟨L′(hθ1θ2), R(gϕ1ϕ2)⟩
= ⟨L′(h), R(g)⟩ (θ1θ2, ϕ1ϕ2)

for each pair h, g of elements ofQ8, establishing a group homomorphism

π : (AutQ8)
2 → AutMltQ8; θ ⊗ ϕ 7→ (θ1, ϕ1) .

Here, we use tensor product notation for the ordered pairs in (AutQ8)
2.

The task is to show that the kernel of π is trivial. Suppose there are
automorphisms θ, ϕ of Q8 such that

⟨L′(hθ), R(gϕ)⟩ = ⟨L′(h), R(g)⟩
for all h, g ∈ Q8. In other words, (h−1)θxgϕ = h−1xg, or equivalently,
xgϕg−1 = hθh−1x, for all x in Q8. Taking x = 1 gives gϕg−1 = hθh−1,
so that gϕg−1 = z = hθh−1 for some central element z.

We now have gϕ = gz and hθ = hz for all h, g ∈ Q8. In other words,
ϕ = R(z) = θ. But θ and ϕ are automorphisms of Q8, so z = 1. Thus
θ and ϕ are the identity automorphisms of Q8, as required. □

Theorem 3.16. The automorphism group of MltQ8 is isomorphic to
the wreath product S4 ≀ S2, of order (24)

2 × 2 = 1152. Specifically, each
automorphism has the form

(3.14) Sε(θ, ϕ)Sε = (θ, ϕ)σε

with S : Q8 → Q8; x 7→ x−1 or σ as in [11, (2.8)], for automorphisms
θ, ϕ of Q8 and ε ∈ { 0, 1 }.
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Proof. According to [10, Prop. 2.19], the conjugation σ by S is an
automorphism of MltQ8. Since Q8 is not Boolean, [11, Cor. 2.20] shows
that σ is not internal. It follows from Proposition 3.15 that Π ∪ Πσ is
a subgroup of AutMltQ8, of order (24)

2× 2 = 1152, isomorphic to the
wreath product S4 ≀ S2.

The group OutMltQ8 of outer automorphisms of the extraspecial
group E2

∼= MltQ8 is isomorphic to the full orthogonal group 0+(4, 2)

of the central quotient Eζ
2 of E2 [9, Bem. III.13.9(b)]. Here, we are

using the notation of [4] for the full orthogonal group. The orthogonal
group Ω+(4, 2), isomorphic to SL2(2) × SL2(2), is a subgroup of index
2 in 0+(4, 2) [4, §2]. It follows that |OutMltQ8| = 62 × 2 = 72.

The inner automorphism group InnMltQ8 has order 16, as given, for
example, by Theorem 2.6(e). Thus the order of the full automorphism
group AutMltQ8 is 72×16 = 1152. It follows that every automorphism
of MltQ8 has the form (3.14). □

Remark 3.17. The dihedral group D4 has inner automorphism group
C2

2 (cf. §2.4) and outer automorphism group C2 — cf. Theorem 2.1(j).
Thus, D4 only has 8 automorphisms, an insufficient number for it to
be able to provide an analogue of Theorem 3.16.

3.5. Pauli subgroups within the Pauli hull. As an application of
Table 1, and as a counterpart to Proposition 2.9, the following result
identifies our chosen Pauli subgroup within the Pauli hull MltQ8, using
the multivalent notation for the multiplication group.

Proposition 3.18. Within the Pauli hull MltQ8, the subset

(3.15) Li = { ⟨L′(h), R(g)⟩ | g ∈ Q8 , h ∈ ⟨i⟩ }

forms a subgroup of order 16 modeling the Pauli group.

Proof. The result is apparent on translating the elements of the third
column of Table 1 into multivalent notation using [11, Lemma 2.18]. □

Proposition 3.18 and Theorem 3.16 may now be used to give a fuller
overview of the six Pauli subgroups in the Pauli hull (cf. [6, p.150]),
manifesting the symmetry broken by the choice of Li that underlies
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Table 1. We extend the notation of (3.15) as follows:

Li = { ⟨L′(h), R(g)⟩ | g ∈ Q8 , h ∈ ⟨i⟩ } ;(3.16)

Lj = { ⟨L′(h), R(g)⟩ | g ∈ Q8 , h ∈ ⟨j⟩ } ;

Lk = { ⟨L′(h), R(g)⟩ | g ∈ Q8 , h ∈ ⟨k⟩ } ;

Ri = { ⟨L′(g), R(h)⟩ | g ∈ Q8 , h ∈ ⟨i⟩ } ;

Rj = { ⟨L′(g), R(h)⟩ | g ∈ Q8 , h ∈ ⟨j⟩ } ;

Rk = { ⟨L′(g), R(h)⟩ | g ∈ Q8 , h ∈ ⟨k⟩ } .

Theorem 3.19. In the extraspecial Pauli hull MltQ8, the six subgroups
exhibited in (3.16) constitute the orbit of the chosen Pauli subgroup
(3.15) under the automorphism group of MltQ8.

Proof. By [10, Prop. 2.19], the automorphism σ of MltQ8 interchanges
Lh with Rh, for each h ∈ { i, j,k }.

Now, the outer automorphism θ3 of Q8 from (3.10) gives

(θ3, ϕ) : Li 7→ Lj 7→ Lk 7→ Li

in the notation of Theorem 3.16, for any automorphism ϕ of Q8. On
the other hand, for any automorphisms θ, ϕ of Q8, we have

(3.17) (θ, ϕ) : Li 7→ { ⟨L′(hθ), R(gϕ)⟩ | g ∈ Q8 , h ∈ ⟨i⟩ } .

Here, the set {L′(hθ) | h ∈ ⟨i⟩ } is one of the three maximal abelian
subgroups ⟨i⟩ , ⟨j⟩ , ⟨k⟩ , of Q8. Thus, the image of (3.17) is an element
of {Li, Lj, Lk }, as required to complete the proof of the theorem. □

Table 2 presents the 4 central classes (which constitute the phase

space Gζ
1) of the respective models (3.16) of the Pauli group inside

MltQ8. The double lines in the table are designed to emphasize how

the column vector

 i
j
k

 and matrix

 ii ij ik
ji jj jk
ki kj kk

 ,

along with its transpose, underlie the structure of the table.
Table 2 may also be recast to show how the 12 elements of order 4 in

MltQ8 (cf. Lemma 3.7) appear as the 8 elements ±iI,±iX,±iY,±iZ
in each of the 6 models of the Pauli group G1. See Table 3. This time,
the double lines in the table are designed to emphasize how the

column vector

 i
j
k

 and matrix

i j k
i j k
i j k


underlie the structure of the table.
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⟨i⟩ I ⟨i⟩X ⟨i⟩Y ⟨i⟩Z

Li ⟨L′(⟨i⟩), R(1)⟩ ⟨L′(⟨i⟩), R(i)⟩ ⟨L′(⟨i⟩), R(j)⟩ ⟨L′(⟨i⟩), R(k)⟩

Lj ⟨L′(⟨j⟩), R(1)⟩ ⟨L′(⟨j⟩), R(i)⟩ ⟨L′(⟨j⟩), R(j)⟩ ⟨L′(⟨j⟩), R(k)⟩

Lk ⟨L′(⟨k⟩), R(1)⟩ ⟨L′(⟨k⟩), R(i)⟩ ⟨L′(⟨k⟩), R(j)⟩ ⟨L′(⟨k⟩), R(k)⟩

Ri ⟨L′(1), R(⟨i⟩)⟩ ⟨L′(i), R(⟨i⟩)⟩ ⟨L′(j), R(⟨i⟩)⟩ ⟨L′(k), R(⟨i⟩)⟩

Rj ⟨L′(1), R(⟨j⟩)⟩ ⟨L′(i), R(⟨j⟩)⟩ ⟨L′(j), R(⟨j⟩)⟩ ⟨L′(k), R(⟨j⟩)⟩

Rk ⟨L′(1), R(⟨k⟩)⟩ ⟨L′(i), R(⟨k⟩)⟩ ⟨L′(j), R(⟨k⟩)⟩ ⟨L′(k), R(⟨k⟩)⟩

Table 2. The phase spaces of the Pauli subgroups (3.16).

±iI ±iX ±iY ±iZ

Li ⟨L′(±i), R(1)⟩ ⟨L′(1), R(±i)⟩ ⟨L′(1), R(±j)⟩ ⟨L′(1), R(±k)⟩

Lj ⟨L′(±j), R(1)⟩ ⟨L′(1), R(±i)⟩ ⟨L′(1), R(±j)⟩ ⟨L′(1), R(±k)⟩

Lk ⟨L′(±k), R(1)⟩ ⟨L′(1), R(±i)⟩ ⟨L′(1), R(±j)⟩ ⟨L′(1), R(±k)⟩

Ri ⟨L′(1), R(±i)⟩ ⟨L′(±i), R(1)⟩ ⟨L′(±j), R(1)⟩ ⟨L′(±k), R(1)⟩

Rj ⟨L′(1), R(±j)⟩ ⟨L′(±i), R(1)⟩ ⟨L′(±j), R(1)⟩ ⟨L′(±k), R(1)⟩

Rk ⟨L′(1), R(±k)⟩ ⟨L′(±i), R(1)⟩ ⟨L′(±j), R(1)⟩ ⟨L′(±k), R(1)⟩

Table 3. Elements of order 4 in the Pauli subgroups (3.16).

Proposition 3.20. The setwise stabiliser of a Pauli subgroup under
the action of AutMltQ8 from Theorem 3.19 is the group D4 × S4 . In
particular, the subgroup

(3.18) { (θ, ϕ) ∈ AutMltQ8 | ⟨i⟩ θ = ⟨i⟩ }
is the setwise stabiliser of (3.15).

Proof. Consider the Pauli subgroup Li of (3.15). Suppose that the
internal automorphism (θ, ϕ) stabilizes Li setwise. Then ϕ may be any
automorphism of Q8, while θ must fix the maximal abelian subgroup
⟨i⟩ of Q8 setwise. Since there are 3 maximal abelian subgroups, there
are 8 choices for θ within AutQ8 — compare Remark 3.12(e). Thus
(3.18) has order 24×8 = 192. There are 6 Pauli subgroups in the orbit
(3.16) of Li, and 192× 6 = 1152 = |AutMltQ8|. It follows that (3.18)
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is the full setwise stabiliser of Li in AutMltQ8. By Remark 3.12(e), the
elements θ form a group isomorphic to D4, while by Proposition 3.11,
the independent elements ϕ form a group isomorphic to S4. □
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