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On the category of weak Cayley table
morphisms between groups

K. W. Johnson and J. D. H. Smith

Abstract. Weak Cayley table functions between groups are generalized con-
jugacy-preserving homomorphisms, under which products of images are con-
jugate to images of products. There is a weak Cayley table bijection between
two groups iff they have the same 2-characters. In this paper, weak Cayley
table functions are augmented to include the specific conjugating elements,
leading to the concept of a weak (Cayley table) morphism. If the conjugating
elements are chosen subject to a crossed-product condition, then the weak
morphisms between groups form a category. The forgetful functor to this cat-
egory from the category of group homomorphisms is shown to possess a left
adjoint. Two weak morphisms are said to be homotopic if they project to the
same weak Cayley table function. As a first step in the analysis of the cate-
gory of weak morphisms, the group of units of the monoid of weak morphisms
homotopic to the identity automorphism of a group is described.
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1. Introduction

The question of how much information about a finite group G is contained in
its ordinary character table was formulated by Richard Brauer in [1], together
with the question of which information in addition to the character table of G

determines G up to isomorphism. For example, for the latter question Brauer
suggested that the power maps on conjugacy classes might be enough, but Dade
quickly gave an example of a pair of non-isomorphic groups with the same character
table and power maps (such a pair is usually called a Brauer pair). Recent work
revisiting Frobenius’ original papers on group characters provided an answer to
the second question of Brauer in terms of the “k-characters” of a group ([4]–[6]). It
was shown that the 3-character of the regular representation, or the 3-characters
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of the irreducible representations, determine a group up to isomorphism. The 1-
characters coincide with the ordinary characters, so there is a natural question:
what information about the group is contained in the 2-characters? Here if χ is a
character, the corresponding 2-character χ(2) is defined by

χ(2)(g, h) = χ(g)χ(h) − χ(gh).

For an odd prime p, two non-isomorphic non-abelian groups of order p3 have the
same 2-characters, and thus we know that the irreducible 2-characters do not
determine a group. The weak Cayley table of a group G is the table indexed by
the elements of G whose (x, y)-entry is the conjugacy class containing the product
xy. Two groups G1 and G2 have the same irreducible 2-characters if and only if
there is a bijection between them which induces an identification of their weak
Cayley tables in the following sense. A function f : G1 → G2 is a weak Cayley
table bijection if it is a bijection which induces a bijection between the conjugacy
classes of G1 and G2 such that (xy)f is conjugate to xfyf for all x, y in G1. The
paper [7] gives an account of work on the weak Cayley table. In [3] Humphries
investigated the group of weak Cayley table bijections from a group G to itself.

If f : G1 → G2 is a weak Cayley table bijection, then in particular G1

and G2 have the same character table. Often the simplest method to show that
a pair of groups has the same character table is to exhibit a weak Cayley table
bijection between them. Moreover, whereas character theory can be hard to define
in the case of infinite groups, the definition of a weak Cayley table bijection is
exactly the same as in the finite case. Just as group isomorphisms are best viewed
as invertible group homomorphisms, the weak Cayley table bijections are best
viewed as invertible “weak Cayley table functions.” A weak Cayley table function
f : G → H is a function f from a group G to a group H mapping conjugate
elements of G to conjugate elements of H, and such that the image of a product
of elements of G is conjugate in H to the product of their images. In addition, f

is required to map the identity element of G to the identity element of H. (Note
that Humphries introduced the term “weak Cayley table morphism” in [3] for such
functions without the condition on the image of the identity. Since he did not make
further use of the term, we prefer to reserve it for the context of Definition 2.1.
The relevance of the condition on identities is discussed in Remark 2.2(c). The
condition turns out to be redundant for bijections [7, p. 378].)

A detailed study of the weak Cayley table functions demands a specification
of the codomain elements that perform the conjugations. In Section 2 of this paper
a weak Cayley table function together with an appropriate specification of these
conjugating elements is defined to be a weak Cayley table morphism, or more briefly
just a weak morphism (Definition 2.1). The definition includes a crossed-product
condition in the sense of [2]—cf. Remark 2.2(d). Theorem 3.3 then shows that un-
der composition, the weak morphisms form a category Gwp. It is curious to note
that without the crossed-product condition, the weak morphisms would only form
a “non-associative category” under composition. Such objects may well justify fur-
ther consideration. In particular, just as groups are represented by automorphisms
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in categories (for ordinary linear representations, the category of complex vector
spaces; for permutation representations, the category of sets), one might represent
quasigroups naturally by automorphisms in such non-associative categories.

Since group homomorphisms are weak Cayley table functions, and may thus
be construed as weak morphisms, there is a forgetful functor to Gwp from the
category Gp of group homomorphisms. Theorem 4.1 constructs a left adjoint to
this functor. On the other hand, forgetting the specific choice of conjugating ele-
ments embodied in a weak morphism yields a projection functor P from Gwp to
the category Set of sets. Two weak morphisms are said to be homotopic if they
project under P to the same weak Cayley table function. The final section 5 exam-
ines the monoid P−1

1 {idG} of weak morphisms that are homotopic to the identity
morphism on a group G. As shown by Proposition 5.2(d), this monoid may well
contain non-invertible elements. Indeed, Problem 5.1 asks whether each weak Cay-
ley table bijection is the image under the projection functor P of an isomorphism
in the category Gwp. An invertible element of the monoid P−1

1 {idG} yields a left
quasigroup structure on the set G. The left multiplication maps of these various
left quasigroups form a group known as the perturbation group ΓG of the group G.
Theorem 5.6 analyzes the structure of this group. In turn, the perturbation group
ΓG appears in the structure of the group UG of units of the monoid P−1

1 {idG},
as described by Theorem 5.8. Note that for each weak morphism α : G → H,
composition in the category Gwp affords a left action of UG and a right action of
UH on the homotopy class of α.

Throughout the paper, notational conventions and definitions not otherwise
explained follow the usage of [8].

2. Weak morphisms

Definition 2.1. Let G and H be groups. Then a weak (Cayley table) morphism
α : G → H consists of a triple (α1, α2, α3) of functions

α1 : G → H; g 7→ gα1

and
αi : G2 → H; (g1, g2) 7→ αi(g1, g2)

for i = 2, 3 such that:

(1) α1 maps the identity of G to the identity of H; and
(2) gα1

1 gα1

2 α2(g1, g2) = α2(g1, g2)(g1g2)
α1 ,

(3) gα1

1 α3(g1, g2) = α3(g1, g2)(g
−1
2 g1g2)

α1 ,
(4) α3(g1, g2g3) = α3(g1, g2)α3(g

−1
2 g1g2, g3)

for all g1, g2, g3 in G.

Remark 2.2. We use the notation π2 : G2 → G; (g1, g2) 7→ g2.

(a) If f : G → H is a group homomorphism, then the triple (f, eH , π2f) is a
weak morphism, the second component being the constant map eH : G2 → H

whose value is the identity element of H.



60 K. W. Johnson and J. D. H. Smith Sel. math., New ser.

(b) Let J : G → G; g 7→ g−1 be the inversion map on a group G. Then (J, π2, π2) :
G → G is a weak morphism.

(c) Condition (1) of Definition 2.1 is not redundant. Consider the group G of
permutations of the set {1, 2, 3}. Let α1 : G → G be the constant map with
value (123). Let α2 : G2 → G be the constant map with value (23). Let
α3 : G2 → G be the constant map with value (1). Then (α1, α2, α3) satisfies
conditions (2)–(4) of Definition 2.1, but not condition (1).

(d) In Definition 2.1, consider the conjugation action of G on itself. Then in the
language of [2], condition (4) says that α3 is a crossed product.

Proposition 2.3. Let α : G → H be a weak morphism. Then for all g in G, one
has the following:

(i) [gα1 , α2(1, g)] = [gα1 , α2(g, 1)] = 1;
(ii) (g−1)α1 = (gα1)−1;
(iii) the map G → H; x 7→ α3(1, x) may be chosen as an arbitrary homomorphism;
(iv) α3(g, 1) = 1.

Proof. Statement (i) follows by specialization of the arguments g1, g2 in condition
(2) of Definition 2.1. Statement (ii) follows by condition (1) on setting g1 = g

and g2 = g−1 in condition (2)—cf. [7, p. 398]. Statement (iii) is apparent upon
specialization of condition (3), the homomorphic property being required for con-
sistency with condition (4). Finally, statement (iv) follows on setting g1 = g and
g2 = g3 = 1 in condition (4) of Definition 2.1. �

Remark 2.4. In view of Proposition 2.3(iii), one might choose a normalization
α3(1, g) = 1 for g in G as part of the requirements of Definition 2.1. However, this
would preclude the convenient use of the second projection π2 in contexts such as
Remark 2.2(a) and (b).

3. The category of weak morphisms

Proposition 3.1. Let α : G → H and β : H → K be weak morphisms. Then there
is a composite weak morphism αβ : G → K with components (αβ)1 = α1β1,

(αβ)2(g1, g2) = β2(g
α1

1 , gα1

2 )β3(g
α1

1 gα1

2 , α2(g1, g2)) , (3.1)

and

(αβ)3(g1, g2) = β3(g
α1

1 , α3(g1, g2)) (3.2)

for g1, g2 in G.

Proof. It must be verified that αβ satisfies the conditions of Definition 2.1. Condi-
tion (1) is immediate. To verify condition (3), note that condition (3) on α implies

(g−1
2 g1g2)

α1 = α3(g1, g2)
−1gα1

1 α3(g1, g2) (3.3)

for g1, g2 in G. Condition (3) on β applied to (3.3) then yields

(g−1
2 g1g2)

α1β1 = β3(g
α1

1 , α3(g1, g2))
−1g

α1β1

1 β3(g
α1

1 , α3(g1, g2))
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as required, given (αβ)3 expressed by (3.2). To verify condition (2) on αβ, note
that condition (2) on α implies

(g1g2)
α1 = α2(g1, g2)

−1gα1

1 gα1

2 α2(g1, g2) (3.4)

for g1, g2 in G. Applying condition (3) on β to (3.4) gives

(g1g2)
α1β1 = β3(g

α1

1 gα1

2 , α2(g1, g2))
−1(gα1

1 gα1

2 )β1β3(g
α1

1 gα1

2 , α2(g1, g2)).

Expansion of the middle term (gα1

1 gα1

2 )β1 of the right hand side of this equation
using condition (2) on β then yields the required condition (2) on αβ, with (αβ)2
being specified by (3.1). Finally, for gi in G, equation (3.2) and Definition 2.1 give

(αβ)3(g1, g2g3) = β3(g
α1

1 , α3(g1, g2g3))

= β3(g
α1

1 , α3(g1, g2)α3(g
−1
2 g1g2, g3))

= β3(g
α1

1 , α3(g1, g2))β3(α3(g1, g2)
−1gα1

1 α3(g1, g2), α3(g
−1
2 g1g2, g3))

= β3(g
α1

1 , α3(g1, g2))β3((g
−1
2 g1g2)

α1 , α3(g
−1
2 g1g2, g3))

= (αβ)3(g1, g2)(αβ)3(g
−1
2 g1g2, g3),

verifying condition (4) on αβ. �

Proposition 3.2. For weak morphisms α : G → H, β : H → K and γ : K → L,
the associative law (αβ)γ = α(βγ) holds.

Proof. The equality (αβ.γ)1 = (α.βγ)1 just represents the associativity (α1β1)γ1 =
α1(β1γ1) of functional composition, while (αβ.γ)3 = (α.βγ)3 follows easily from
(3.2). Now for elements x, y, z of G, the compositions (3.1) and (3.2) reduce
(αβ.γ)2(x, y) to the product of γ2(x

α1β1 , yα1β1) with

γ3(x
α1β1yα1β1 , β2(x

α1 , yα1)β3(x
α1yα1 , α2(x, y))), (3.5)

and (α.βγ)2(x, y) to the product of γ2(x
α1β1 , yα1β1) with

γ3(x
α1β1yα1β1 , β2(x

α1 , yα1))γ3((x
α1yα1)β1 , β3(x

α1yα1 , α2(x, y))). (3.6)

Since β satisfies Definition 2.1(2), the latter term of (3.6) may be rewritten as

γ3(β2(x
α1 , yα1)−1xα1β1yα1β1β2(x

α1 , yα1), β3(x
α1yα1 , α2(x, y))).

The equality between (3.5) and (3.6) then follows since γ satisfies Definition 2.1(4).
�

Theorem 3.3. There is a locally small category Gwp whose object class is the class
of all groups, such that for groups G and H, the morphism class Gwp(G, H) is
the set of all weak morphisms from G to H. The identity morphism at a group G

is the weak morphism ιG = (idG, eG, π2), while the composition of weak morphisms
is given by Proposition 3.1.
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Proof. Consider a weak morphism α : G → H. By (3.1), one has

(αιH)2(g1, g2) = eH(g1, g2)π2(g
α1

1 gα1

2 , α2(g1, g2)) = α2(g1, g2).

By (3.2), one has

(αιH)3(g1, g2) = π2(g
α1

1 , α3(g1, g2)) = α3(g1, g2).

Thus αιH = α. Again by (3.1), one has

(ιGα)2(g1, g2) = α2(g1, g2)α3(g1g2, eG(g1, g2)) = α2(g1, g2),

the latter equation holding by statement (iv) of Proposition 2.3. By (3.2), one has

(ιGα)3(g1, g2) = α3(g1, π2(g1, g2)) = α3(g1, g2).

Thus ιGα = α. The partial associativity of the composition in Gwp is given by
Proposition 3.2. �

Corollary 3.4. There is a forgetful functor U : Gp → Gwp from the category
of (homomorphisms between) groups, with morphism part U : (f : G → H) 7→
(f, eH , π2f).

Proof. Compare Remark 2.2(a). Verification of the functoriality is straightforward.
�

4. The adjunction

Let G be a group. Let W be the free group on the disjoint union G + G2 + G2 of
the set G with two copies of G2. Let η′

1 : G → W insert the generators from G.
For i = 2, 3, let η′

i : G2 → W insert the generators from the (i− 1)-th copy of G2.
Let GF be the quotient of W obtained by imposing the relations

(1) 1
η′

1

G = 1W ;

(2) ∀g1, g2 ∈ G, g
η′

1

1 g
η′

1

2 η′
2(g1, g2) = η′

2(g1, g2)(g1g2)
η′

1 ;

(3) ∀g1, g2 ∈ G, g
η′

1

1 η′
3(g1, g2) = η′

3(g1, g2)(g
−1
2 g1g2)

η′

1 ;
(4) ∀gi ∈ G, η′

3(g1, g2g3) = η′
3(g1, g2)η

′(g−1
2 g1g2, g3)

corresponding to the respective conditions of Definition 2.1. Let ηi for 1 ≤ i ≤ 3
denote the composite of η′

i with the projection from W to GF . Note that ηG or

(η1, η2, η3) : G → GFU (4.1)

is a weak morphism.

Theorem 4.1. The forgetful functor U : Gp → Gwp has a left adjoint F :
Gwp → Gp.

Proof. Let α : G → H be a weak morphism. There is a unique homomorphism

from W to H defined by g
η′

1

1 7→ gα1

1 and η′
i(g1, g2) 7→ αi(g1, g2) for i = 2, 3

and g1, g2 in G. This homomorphism factorizes through a unique homomorphism
α : GF → H.
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It will now be verified that (η1, η2, η3)(α, eH , π2α) = (α1, α2, α3). For g in G,
one has

gη1α = gα1 (4.2)

by the definition of α. For g1, g2 in G, (3.1) yields

(ηαU )2(g1, g2) = η2(g1, g2)
α = α2(g1, g2), (4.3)

while (3.2) gives

(ηαU )3(g1, g2) = η3(g1, g2)
α = α3(g1, g2). (4.4)

On the other hand, the final equations in the lines (4.2)–(4.4) specify the homo-
morphism α : GF → H uniquely. �

Corollary 4.2. Let
∏

i∈I Hi be the product (in Gp) of a family of groups, equipped
with projections pi :

∏
j∈I Hj → Hi for each i in I. Then the group

∏
i∈I Hi,

equipped with projections pU
i :

∏
j∈I Hj → Hi for each i in I, is the product in

Gwp of the family of groups.

Proof. The right adjoint U : Gp → Gwp creates products. �

Corollary 4.3. For a group G, the weak morphism (4.1) is the component at G of
the unit of the adjunction of Theorem 4.1.

As a dual to Corollary 4.3, note that the component at a group G of the counit
of the adjunction of Theorem 4.1 is the group homomorphism εG : GF → G given
by

g
η1

1 7→ g1, η2(g1, g2) 7→ 1, η3(g1, g2) 7→ g2

for g1, g2 in G.

5. Homotopy

Let P : Gwp → Set be the functor to the category of sets projecting each weak
morphism α : G → H to its first component α1 : G → H. The image of the
functor P , a subcategory GwpP of Set, is called the category of weak Cayley table
functions. The basic open problem concerning the relation between weak Cayley
table bijections and the categorical considerations of this paper is the following.

Problem 5.1. Is each weak Cayley table bijection the projection under P of a weak
isomorphism?

The following concept may help to put Problem 5.1 into context. Two par-
allel weak morphisms α, β : G → H are said to be homotopic if α1 = β1. The
proposition below shows that the homotopy class of an isomorphism may contain
weak morphisms which are not isomorphisms. In other words, there may be non-
invertible weak morphisms that project under P to a weak Cayley table bijection.
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Proposition 5.2. Let G be a group.

(a) The homotopy class P−1
1 {idG} of the identity ιG = (idG, eG, π2) forms a

monoid.
(b) For each α in P−1

1 {idG}, one has

α2(x, y) ∈ CG(xy) and α3(x, y) ∈ CG(x)y

for all x, y in G.
(c) For elements α, β of P−1

1 {idG}, one has αβ = ιG if and only if

β3(x, α3(x, y)) = y (5.1)

and
β2(x, y) = β3(xy, α2(x, y))−1 (5.2)

for all x, y in G.
(d) If G is non-trivial, then the monoid P−1

1 {idG} is not a group.

Proof. (a) is an immediate consequence of the functoriality of P .
(b) follows from Definition 2.1(2),(3).
(c) follows from (3.1) and (3.2), along with the definition of ιG.
(d): For α in P−1

1 {idG} to be invertible, (5.1) shows that

α̂x : G → G; y 7→ α3(x, y) (5.3)

must biject for each x in G. On the other hand, Proposition 2.3(iii) shows that the
homomorphism α̂1 : G → G may be chosen arbitrarily, and in particular need not
biject if G is non-trivial. �

Equation (5.1) shows that each invertible weak morphism α homotopic to the
identity map on a group G yields a left quasigroup structure (G, α3, (α

−1)3) on
the underlying set G of the group. The maps (5.3) are the left multiplications in
the left quasigroup. The following definition gives a different description of these
maps. For a set X, let X! denote the group of permutations of X. For a subgroup
H of a group G, let H\G denote the set {Hx | x ∈ G} of right cosets of H.

Definition 5.3. Let G be a group. Then a perturbation of G is a map θ : x 7→ θx

with domain G such that

(1) θx ∈
∏

X∈CG(x)\G X! and

(2) (yz)θx = yθx.zθy−1xy

for all x, y, z in G. Such a map θ is said to perturb G.

Remark 5.4. Let θ perturb a group G with elements x and y.

(a) The map θx restricts to an automorphism of CG(x). In particular, a pertur-
bation of an abelian group A is just an indexed collection of automorphisms
of A.

(b) By Definition 5.3(2), knowledge of θx implies knowledge of θy−1xy. Thus a
perturbation is specified completely by its values on a set of representatives
for the conjugacy classes of G. These various values, in turn, are independent
of each other.
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Proposition 5.5. The set ΓG of all perturbations of a group G forms a group under
the multiplication (θ, ϕ) 7→ (x 7→ θxϕx).

Proof. Let θ and ϕ be perturbations. Then for x, y, z in G, one has (yz)θxϕx =
(yθx.zθy−1xy)ϕx = yθxϕx.zθy−1xyϕv−1xv with v = yθx. However, v−1xv = y−1xy

by Definition 5.3(1) for θ. �

The structure of the group ΓG of perturbations of a group G is described as
follows.

Theorem 5.6. Let G be a group, and let {gi | 0 ≤ i < s} be a set of representatives
for the conjugacy classes of G, with g0 = 1. For each 0 ≤ i < s, let ni be the
cardinality of the conjugacy class of gi, and let Aut(CG(gi)) act diagonally on the
power CG(gi)

ni−1. Then the group ΓG of perturbations of G is isomorphic to the
product ∏

0≤i<s

CG(gi)
ni−1

⋊ Aut(CG(gi)) (5.4)

of split extensions.

Proof. Consider a particular representative g ∈ {gi | 0 ≤ i < s}, with conjugacy
class of cardinality m. Let {x1, . . . , xm} be a set of representatives of the right
cosets of CG(g) in G, with x1 = 1.

For a perturbation θ, denote the restriction of θg to CG(g) by θg. By Re-

mark 5.4(a), θg is an automorphism of CG(g). For perturbations θ and ϕ, sup-
pose that xiθg = cixi and xiϕg = dixi with ci, di in CG(g). The permuta-

tion θg of G is specified completely by the m-tuple (θg, c2, . . . , cm), since for

x = cxi ∈ CG(g)xi, one has xθg = (cxi)θg = cθg.xiθc−1gc = cθg.cixi. More-
over, xi(θgϕg) = (cixi)ϕg = (ciϕg.di)xi, so that ΓG maps homomorphically to the
product (5.4).

Conversely, consider an element of the product (5.4) whose component at g

is (θg, c2, . . . , cm). For an element x = cxi ∈ CG(g)xi of G, define xθg = cθg.cixi.
These specifications, for the various conjugacy class representatives g, completely
specify a unique perturbation θ in accordance with Remark 5.4(b). �

Proposition 5.7. Let G be a group. If α is an invertible element of the monoid
P−1

1 {idG}, then α̂ given by its values (5.3) is a perturbation of G.

Proof. Satisfaction of Definition 5.3(1) by α̂ follows from Proposition 5.2 and its
proof. Condition (2) of Definition 5.3 for α̂ is an immediate consequence of condi-
tion (4) of Definition 2.1 for α. �

Theorem 5.8. Let G be a group, and let UG be the group of units P−1
1 {idG}

∗ of
the homotopy class P−1

1 {idG}.

(a) UG contains a normal subgroup

U2 = {(idG, α2, π2) | ∀x, y ∈ G, α2(x, y) ∈ CG(xy)}

isomorphic to
∏

(x,y)∈G2 CG(xy).
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(b) UG contains a subgroup

U3 = {α = (idG, eG, α3) | α̂ ∈ ΓG}

isomorphic to the perturbation group ΓG.
(c) UG is the semidirect product of the subgroup U2 by the subgroup U3. The

action of U3 on U2 is given by

(idG, eG, β3)
−1(idG, α2, π2)(idG, eG, β3) = (idG, α′

2, π2) (5.5)

with α′
2 : (x, y) 7→ α2(x, y)β̂xy.

Proof. (a): The isomorphism is given by

(idG, α2, π2) 7→ ((x, y) 7→ α2(x, y)−1).

Then for α ∈ U2, β ∈ U , and x, y ∈ G, one has

(αβ)3(x, y) = β3(x, π2(x, y)) = yβ̂x

and

(β−1.αβ)3(x, y) = (αβ)3(x, β−1
3 (x, y)) = yβ̂−1

x β̂x = y,

so U2 is normal in U . If now β ∈ U3, then

(αβ)2(x, y) = eG(x, y)β3(xy, α2(x, y)) = α2(x, y)β̂xy

and

(β−1.αβ)2(x, y) = (αβ)2(x, y).(αβ)3(xy, β−1
2 (x, y))

= α2(x, y)β̂xy.idGβ̂xy = α2(x, y)β̂xy,

the last equality holding by Remark 5.4(a). Thus (5.5) is verified.
(b): The isomorphism is given by the map (idG, eG, α3) 7→ α̂ and its inverse α̂ 7→
(idG, eG, (x, y) 7→ yα̂x).
(c): Certainly U2∩U3 is trivial. Consider a general element α = (idG, α2, α3) of U .
Then α = (idG, eG, α3)(idG, α2, π2). Thus U = U3.U2. �

Remark 5.4(a) yields the following special case of Theorem 5.8.

Corollary 5.9. For a finite abelian group A of order n, the group of units UA is

isomorphic to the semidirect product An2

⋊ Aut(A)n.
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