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Abstract. Loday’s notoriously elusive “coquecigrues” are meant
to relate to Leibniz algebras in the same various ways that groups
relate to Lie algebras. However, with the current approaches based
on digroups, deadlock has been reached at the analogues of Lie’s
Third Theorem. Here, adjoint representations appear in the places
where regular representations should be expected. The present
work, intended as a stimulus to new approaches to the problem,
proposes more symmetrical versions of the algebras involved. The
fundamental guiding principle is to maintain both left and right
actions on a completely equal footing. A coherent and cumulative
series of Cayley theorems gives concrete representations of abstract
split versions of semigroups, monoids, and groups, based upon the
Galois theory of “symmetries of symmetries”. Interpreted within
monoidal categories, the new group-like objects we present provide
a complete left/right split of Hopf algebra structure. The Cayley
embedding appears intrinsically as the left/right symmetric part
of the coassociativity diagram.
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1. Introduction

1.1. Loday’s coquecigrue problem. In a linear tensor category L (a
monoidal product distributes over coproducts, as in a category of vector
spaces), Loday defined dialgebras [17] by splitting the multiplication of
a not necessarily unital associative algebra into two related left- and
right-handed products. A dialgebra corresponds to a semigroup in the
monoidal infinitesimal category LM of L-morphisms [18], where the
domain of its underlying L-morphism becomes a bimodule over the
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codomain. In analogous fashion, a Lie algebra in LM corresponds to a
Leibniz algebra, where the Jacobi identity and skew-symmetry of a Lie
algebra g are relaxed to just the derivation property (Leibniz identity)

[[x, y], z] = [[x, z], y] + [x, [y, z]]

of the maps Adz : g → g;x 7→ [x, z] for each z ∈ g. An infinitesimal
category CM can be defined over more general (i.e., not necessarily
linear) tensor categories C. In all cases, the monoidal unit of CM
is the unique morphism ⊥ → ⊤ in C from its initial object ⊥ to its
terminal object ⊤.
In [16, §11], Loday proposed putative structures which he tentatively

called coquecigrues, whose relations to Leibniz algebras would extend
the multifarious relationships of groups to Lie algebras. To this day,
they have remained as elusive as Loday’s terminology was intended to
suggest. Kinyon [12] and several subsequent authors have examined the
extent to which Lie racks, namely right distributive right quasigroups
in a category of smooth maps, might function in a version of Lie’s
Third Theorem for Leibniz algebras (in the sense of [34, Pt. II, §V.8]).
Unfortunately, Lie racks produce adjoint representations where regular
representations should appear.

While the search for Loday’s coquecigrues may well serve as a first
motivation for the current paper, we will defer any detailed discussion
of that question to future work, not least on the grounds of space
considerations. Suffice it to say that, where Loday in [16, §11] speaks
of a single tangent space of a “Leibniz group”, the orbitoid structures
developed in this paper (§2.2, §6.4) will suggest that a “Leibniz group”
should support two distinct, interacting foliations. In the Lie group
case, these foliations coincide and trivialize to a single leaf comprising
the entire Lie group.

1.2. Left/right splitting of Hopf algebras. A second motivation
for the current paper is the development of a left/right splitting of the
concept of a Hopf algebra, to parallel Loday’s left/right splitting of
semigroup structure in various categories. Current approaches to this
question have just taken Hopf algebras in the infinitesimal category
LM of a linear tensor category L, for instance as universal enveloping
algebras of Leibniz algebras. Compare [14], [18, §5], and [21, §5], for
example. In particular, the connection with Yetter-Drinfel’d modules
is noted in [14].

These established approaches will not work within the infinitesimal
category CM of more general tensor categories C, such as categories of
sets, topological spaces, or manifolds under smooth maps, where the
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initial object ⊥ is the empty set. The counit of a Hopf algebra has the
tensor unit as its codomain, but the empty “upstairs” part of the tensor
unit ⊥ → ⊤ of CM in these cases could only serve as the codomain of
a morphism from ⊥ itself.

Much of the current paper is dedicated to the solution of this splitting
problem, based on a C-morphism that is taken in context as the adjoint
map π : S → Sπ of Definition 4.6, modeled in the category of sets.
Table 1 summarizes the left/right splitting of a Hopf algebra that is
achieved, and the specific category diagrams that result are detailed in
§4.5 and §6.6.1 The crucial novelty may be observed in the mutually
dual diagrams of §6.6.1 (unitality) and §6.6.2 (counitality), where the
usual general monoidal category unitors λ and ρ are accompanied by
bar unitors λ and ρ (§6.5) that are part of the orbitoid structure.

1.3. Left/right splitting of semigroups, monoids, and groups.
The third motivation for the current paper is to settle on a consistent
and cumulative splitting of the elements of the progression

(1.1) semigroup → monoid → group

of conventional algebraic structures, possibly interpreted literally in
the category of sets, or more generally as say non(co)unital bialgebras,
(co)unital bialgebras, and Hopf algebras respectively in a linear tensor
category. The relationships between the two latter structures in (1.1)
include the facts that the set M∗ of invertible elements of a monoid
M forms a group, and that groups are monoids where each element
is invertible. It should also be recalled that French terminology (as
in Loday’s work) interchanges the terms “semigroup” and “monoid”
with respect to the English usage. Thus Kinyon [12] refers to Loday’s
“dimonoids” as “disemigroups”, a precedent that this paper will follow.
The paper works with a progression

(1.2) disemigroup → pregrue → grue

of structures that split their respective counterparts in (1.1). Until
quite recently, split counterparts of groups have just been taken to be
digroups [12, §4], with a single bilateral inversion and a single selected
bar unit e satisfying the identities

(1.3) x� e = x = e� x

1While this diagrammatic specification of the split Hopf algebra structure takes
up more space than compact syntax with Heynemann-Sweedler notation (as in [36,
(4.1)–(4.4)], for example), it is much more transparent, particularly where geometric
symmetry of the diagrams reflects the logical symmetry and duality of the theory.
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[16, §1.2].2 Digroups without any inversion structure, split counter-
parts of monoids, are called dimonoids [12, §4]. While digroups and
dimonoids were allowed to have further bar units beyond the selected
one, these additional bar units were not treated on a par with the one
that had arbitrarily been selected. Only with the appearance of the
generalized digroups of [31] were the various bar units finally placed on
an equal footing. Generalized digroups also admit separate individual
left- and right-handed inversions associated with each of the bar units.

The pregrues of (1.2) are disemigroups that are formally specified
as heterogeneous or two-sorted algebras (S,E,�,�), comprising a full
underlying set S and a set E of bar units (§2.1). The cumulative nature
of the sequence (1.2) is initiated by the observation that disemigroups
are pregrues (S,E,�,�) in which the sort E is empty. Note that this
does not preclude elements of S behaving as bar units according to the
property (1.3).

The grues of (1.2) are pregrues (S,E,�,�, I, J) endowed with a left
inversion I and right inversion J that localize at each bar unit (§2.3,
§6.7). Thus grues incorporate the disemigroup properties possessed
by generalized digroups into a defined algebraic structure. There is
an inversion theory for pregrues (§6.2), and the invertible elements
of a pregrue form a grue (Theorem 6.9). Then grues are pregrues
where each element is invertible. Remark 2.9 clarifies the relationship
between grues and generalized digroups. In [31], inversion properties
were imposed axiomatically or syntactically on generalized digroups.
Now, these proeprties are given a natural and semantic motivation by
the behavior of invertible elements in pregrues.

1.4. Transformation pregrues, permutation grues. At first, the
classical algebraic structures that appear in (1.1) were abstracted from
transformation semigroups, monoids, and groups. Following this model,
a fourth motivation for the current paper is to provide left/right split
versions of these closed sets of functions that may serve as concrete
models of the progression of split algebras in (1.2).

In order to respect the symmetry, both left and right actions on sets
need to be involved. If inversion or the antipode of a Hopf algebra is

2Turnstiles ⊣,⊢ have previously been the notation of choice for the left- and
right-handed products �,� as they appear in (1.3). However, since a turnstile bars
access with its horizontal part, the bar unit e in (1.3) would confusingly appear
on the side away from the bar of the turnstile. The triangular product symbols of
(1.3), which will be used throughout this paper, represent left- and right-handed
versions of the multiplication ∇ in a Hopf algebra. Turnstiles will be used for the
left- and right-handed convolution products of §6.7.
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available, it may be invoked to place both actions on the same side,
be it left or right. This is how digroup actions have been handled in
the existing literature. However, the requirement for a consistent and
cumulative treatment precludes appeal to this option in the grue case,
since it would not be available for disemigroups or pregrues. Rather,
commuting left and right actions are taken. The progressive concepts
of transformation disemigroups (§3.3), transformation pregrues (§3.4.1)
and permutation grues (§6.1) are obtained as the canonical concrete
models for the algebras of (1.2).

A natural illustration of a transformation pregrue is given (using
diagrammatic or algebraic notation, compare §3.1) by the so-called
Yoneda pregrue

(
C(y, y)× C(x, y)× C(x, x), C(x, y),�,�

)
with

(h1, f1, g1)� (h2, f2, g2) = (h1h2, f1h2, g1g2)

and

(h1, f1, g1)� (h2, f2, g2) = (h1h2, g1f2, g1g2)

for an ordered pair (x, y) of objects in a locally small category C. Its
grue C(y, y)∗ × C(x, y) × C(x, x)∗ of invertible elements, involving the
respective automorphism groups C(x, x)∗ and C(y, y)∗ of x and y, forms
a permutation grue. In this example, equal treatment of all the bar
units, one of the fundamental principles of our approach, corresponds
to the symmetry of the morphism set C(x, y). No particular morphism
is singled out for special attention (the way, say, that the zero morphism
might be, if C were abelian).

1.5. Cayley theorems. As reflected in the title, the backbone of the
paper is a progressive series (4.2, 4.4, and 6.13) of Cayley theorems,
for disemigroups, pregrues, and grues in turn. Previously, respective
but unrelated Cayley theorems for dimonoids and digroups had been
provided by A.V. Zhuchok [43, Th. 3] and Kinyon [12, Th. 4.8], as
well as for generalized digroups by Rodŕıguez-Neto, Salazar-Dı́az, and
Velásquez [32, Th. 13].

The cumulative nature of the respective Cayley theorems for the
three structures of (1.2) is essential for the workings of the paper. For
example, the detailed study of invertible elements in a transformation
pregrue (§5.2), paired with the Cayley theorem for pregrues, naturally
leads to the identification of the “correct” inversion properties that
should be required of a grue (felicitously matching the properties of
generalized digroups from [31]). The Cayley embedding for grues then
just restricts the Cayley embedding of a pregrue down to its grue of
invertible elements.
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Cayley theorems, say for monoids and groups, are often just regarded
as concrete representations of abstract objects, as a dialogue between
applied and pure mathematics. The Cayley theorems for pregrues and
grues are more intrinsic. In the context of the adjoint map S → Sπ

of a pregrue (S,E,�,�), as in Definition 4.6, there are mutually dual
maps3

α : Sπ × S × Sπ → S;
(
L�(s−1), s0, R�(s1)

)
7→ s−1 � s0 � s1 ,

well-defined by Loday’s axiom (2.1) that connects the left- and right-
handed products, and

β : S → Sπ × S × Sπ; s 7→
(
L�(s), s, R�(s)

)
.

These maps form the unique parts of the respective associativity and
coassociativity diagrams for pregrues (§4.5.2, §4.5.3) invariant under
the left/right symmetry. The first embodies the dialgebra structure,
and the second is the embedding in the Cayley theorem.

1.6. Plan of the paper. Section 2 summarizes basic definitions of
disemigroups, pregrues, and grues. The definitions are presented at
two levels: first informally, and then formally as two-sorted algebras
(colored operads). The formal definition highlights the importance of
the technical requirement of purity [23, Def’n. 2.1], forcing a nonempty
pregrue to have a nonempty set of bar units. The rudimentary orbitoid
structure of pregrues is presented in §2.2.
As a contrast to the splitting of Hopf algebras that eventually emerges

in §6.6, a direct comparison is made in §2.4 between grues as two-sorted
algebras and the one-sided Hopf algebras of Taft et al. (compare [9]
and further work of Taft and coauthors referenced there). The analogy
establishes an additional precedent for the left/right splitting of the
inversion in generalized digroups and grues. The set of bar units of a
grue assumes the role played by the tensor unit in the one-sided Hopf
algebras.

An inverse to the process of splitting the algebras of (1.1) into the
algebras of (1.2) is introduced in §2.5: taking the largest undirected
quotient of the split algebra, its undirected replica. Undirected replicas
of pregrues with E ̸= Ø are monoids (Lemma 2.16), while undirected
replicas of grues with E ̸= Ø are groups (Proposition 2.17). The term
“grue” itself, breaking down as “group-undirected, E”, is intended to
embody two key facts: that the undirected replica of a grue with bar
units is a group, and that a grue involves a set E of bar units.

3The left and right multiplication notations used in the specifications of α and
β follow (2.3) and (2.4).
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A recurrent theme is the comparison of the undirected replication
S → Sυ with the adjoint map S → Sπ of Definition 4.6. The two may
differ for a pure pregrue S (Remark 4.7), but must agree when S is a
pure grue (Theorem 6.20). Both maps are candidates for interpreting
disemigroups as semigroups in infinitesimal categories, as discussed in
§2.6.

Section 3 presents the transformation disemigroups and pregrues,
as introduced in §1.4. It begins with a careful elementary delineation
(§3.1) of the simultaneous use of left and right actions, respectively
written in Eulerian and in diagrammatic or algebraic notation. By
this device, both right actions (3.3) and left actions (3.4) are given as
monoid homomorphisms. Readers should be aware of the conventions
used for function composition in algebraic notation (3.1) and Eulerian
notation (3.2). The mutual commutation of left and right actions is
governed by the Galois theory of §3.2. Transformation disemigroups
and pregrues are then defined in §3.3 and §3.4.

Respective Cayley theorems for disemigroups and pregrues appear
in Section 4. Working from the pregrue Cayley theorem, the adjoint
map S

π−→ Sπ of a pregrue is defined in §4.3, and is used to enhance the
description of the pregrue orbitoid structure that was begun in §2.2.
The properties of the adjoint map as an object of the infinitesimal
category of the category of sets are examined in §4.4. The section
concludes with the pregrue diagrams, representing that fragment of the
Hopf algebra splitting discussed in §1.2 that is already available in the
pregrue setting. As noted in §1.5, the pregrue Cayley embedding has
its place here as the symmetric part of the coassociativity diagram.

The general theory of inversion in pregrues is treated in Section 5,
and applied to transformation pregrues. The theory is then invoked in
Section 6, through the medium of the pregrue Cayley theorem, to arrive
at the abstract definition of a grue. Permutation grues, as introduced
in §1.4, appear as the sets of invertible elements of transformation
pregrues (Theorem 6.2). Example 6.5 recognizes the bitorsors of [5] as
permutation grues. Theorem 6.9 shows that the invertible elements of
any pregrue (whether pure or not) form a grue. The Cayley theorem
for grues (Theorem 6.13) appears in §6.3.

The remainder of Section 6 presents the orbitoid structure (§6.4),
bar unitors (§6.5), and split Hopf algebra structure (§6.6) discussed
earlier. A coda (§6.7) shows how the convolution structure of a Hopf
algebra is split, thereby placing localized versions (Definition 6.34) of
grue inversions into a new context.
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The final Section 7 provides some concluding remarks and pointers
to directions for future development of the work presented here, beyond
the primary motivation discussed at the start of this introduction.

2. Disemigroups, pregrues and grues

2.1. Disemigroups and pregrues.

Definition 2.1. A disemigroup or directional semigroup (S,�,�) is an
algebra with two associative multiplications �,�, known respectively
as the left and right directional multiplications, such that the internal
associativity

(2.1) (x� y)� z = x� (y � z)

and bar side irrelevance identities

(x� y)� z = (x� y)� z , x� (y � z) = x� (y � z)

are satisfied.4 Note that in the products x� y and y � x, the variable
y is said to be on the bar side [17, p.11].

Remark 2.2. (a) The use of the term “disemigroup” in Definition 2.1
follows Kinyon [12], reflecting the standard English usage of the word
“semigroup” for associative magmas and “monoid” for unital semi-
groups. Reflecting the French usage which interchanges these names,
e.g. [17, Ex. 1.3(a)], Loday called disemigroups “dimonoids”.

(b) A general theory for the splitting of universal algebra operations
into directional or directed operations is presented in [38]. This theory
splits semigroups into disemigroups.

Definition 2.3. A pregrue (S,E,�,�) is a disemigroup (S,�,�),
where the underlying set S contains a set E of bar units, such that
the bar unit identities

(2.2) e� x = x = x� e

are satisfied for each bar unit e.

Remark 2.4. (a) Note that a pregrue (S,E,�,�) with a pointed set E
is a dimonoid in the sense of [12, Def’n. 4.1], where the mere existence
of a chosen bar unit is required.

(b) A pregrue (S,E,�,�) with E = Ø is just a disemigroup.

(c) In terms of universal algebra, a pregrue may be interpreted as a
disemigroup equipped with bar units e, f, . . . being constants that are

4In the context of conformal algebras (compare [38, Ex. 2.7]), a referee notes
Kolesnikov’s terminology of 0-identities for the bar side irrelevance identites [13].
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selected by nullary operations. Thus a dimonoid is a disemigroup with
a single such constant. Dimonoids and disemigroups then constitute
the variety of pregrues satisfying the identity e = f , whatever the size
of the (possibly empty) set E of constants that may be chosen for the
language.

(d) An alternative, more satisfactory universal algebra interpretation
of a pregrue (S,E,�,�) is as a two-sorted algebra (S,E,�,�) with
unary operations ηl, ηr : E → S. In view of Definition 2.10(b) below,
where such an interpretation is used for grues, a corresponding two-
sorted interpretation of pregrues is presented in Definition 2.10(a). In
this context, a pregrue is said to be pure if S = Ø or E ̸= Ø [23].
Purity excludes the realization of a nonempty disemigroup as a pregrue
according to (b).

2.2. Orbitoids in pregrues. Some fundamental properties of bar
units in a pregrue are investigated. The notation used in the following
proposition is a special case of the general currying of a magma product
A× A → A; (x, y) 7→ x ∗ y with left multiplications

(2.3) L∗(a) : A → A; y 7→ a ∗ y
and right multiplications

(2.4) R∗(a) : A → A;x 7→ x ∗ a
for each element a of A. Such left and right multiplications will be used
throughout the paper.

Proposition 2.5. Let e be a bar unit of a pregrue (S,E,�,�). Then
the maps

(2.5) L�(e) : (S,�) → (S,�); s 7→ e� s

and

(2.6) R�(e) : (S,�) → (S,�); s 7→ s� e

are semigroup homomorphisms.

Proof. Note

(e� s1)� (e� s2) = e� (s1 � e)� s2 = e� s1 � s2

for s1, s2 ∈ S, so (2.5) is a semigroup homomorphism. A dual proof
shows that (2.6) is a semigroup homomorphism. □

The terminology used in the following definition will be motivated
by Remark 5.11.

Definition 2.6. Let (S,E,�,�) be a pregrue. Consider e ∈ E.
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(a) The image semigroup

e� S = {e� s | s ∈ S}
of (2.5) is called the right orbitoid of e in S.

(b) The image semigroup

S � e = {s� e | s ∈ S}
of (2.6) is called the left orbitoid of e in S.

Proposition 2.7. Let (S,E,�,�) be a pregrue. Consider e ∈ E.

(a) The right orbitoid (e� S,�, e) of e in S forms a monoid.
(b) The left orbitoid (S � e,�, e) of e in S forms a monoid.

Proof. Note e� (e� s) = e� s. Along with the bar unit property of e,
this shows that e� S is a monoid. The proof of (b) is dual. □

Proposition 2.8. Let (S,E,�,�) be a pregrue. For e, f ∈ E, there is
a commuting diagram

S
L�(f)

||yy
yy
yy
yy
y

L�(e)

""E
EE

EE
EE

E S
R�(e)

||yy
yy
yy
yy R�(f)

""E
EE

EE
EE

EE

f � S
L�(e)

// e� S
L�(f)

oo

R�(e)
// S � e

R�(f)
//

L�(e)
oo

S � f
R�(e)

oo

of functions, where the arrows are semigroup homomorphisms, and the
horizontal arrows are monoid isomorphisms. Furthermore, each pair of
adjacent horizontal arrows (left, middle, and right) is mutually inverse.

Proof. The central horizontal arrows form the mutually inverse pair

(2.7) L�(e) : s� e 7→ e� (s� e) = e� (s� e) = e� s

and

(2.8) R�(e) : e� s 7→ (e� s)� e = (e� s)� e = s� e

of well-defined mappings. Note how bar-side irrelevance intervenes.
The equations (2.7) and (2.8) also serve to yield the commutativity of
the central trapezoids of the diagram. Then (2.8) preserves e, and is a
semigroup homomorphism

(e� s1, e� s2)
� � //

_

(R�(e),R�(e))
��

e� s1 � e� s2 e� (s1 � s2)_

R�(e)
��

(s1 � e, s2 � e) � � // (s1 � s2)� e (s1 � s2)� e

by bar-side irrelevance. Its inverse (2.7) is also a monoid isomorphism.
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All the arrows on the left and the right hand sides of the diagram are
(co)restrictions of the semigroup homomorphisms of Proposition 2.5.

The bar unit properties imply that L�(f) ◦ L�(e) = L�(f) and
R�(e)R�(f) = R�(f) for e, f ∈ E. Here, the respective function
composition notations of (3.2) and (3.1) are employed. These equations
in turn imply that the adjacent horizontal arrows on the left and on
the right hand side of the diagram are mutually inverse, and preserve
units. □

2.3. Grues. At an informal level, a grue (S,E,�,�, I, J) is defined to
be a pregrue (S,E,�,�) equipped with both a left inversion operation
Ie : S → S and a right inversion operation Je : S → S for each bar unit
e, such that the conditions

(2.9) ∀ e ∈ E , ∀ x ∈ S , e = xIe � x and x� xJe = e

are satisfied.

Remark 2.9. The concept of a generalized digroup [31, Def’n. 5,
Prop. 4] corresponds to the disemigroup reduct5 (S,�,�) of a grue,
with a nonempty set of bar units and respective unilateral inversions
appearing as disemigroup properties.

More formal, universal-algebraic definitions of pregrues and grues
are as follows.

Definition 2.10. (a) A pregrue is a two-sorted algebra (S,E,�,�)
such that (S,�,�) is a disemigroup, where there are unary operations
ηl, ηr : E → S, and the bar unit identities

(2.10) eηl � x = x = x� eηr

are satisfied for x ∈ S and e ∈ E. Normally, ηl = ηr, but the distinction
in the labeling will provide a self-duality of the subsequent theory.

(b) A grue (S,E,�,�, I, J) is a pregrue (S,E,�,�) endowed with
a left inversion operation I : E × S → S; (e, x) 7→ xIe and a right
inversion operation J : S×E → S; (x, e) 7→ xJe , along with projections
ϵl : E × S → E; (e, x) 7→ e and ϵr : S × E → E; (x, e) 7→ e, such that
the identities

(2.11) xIe � x = (e, x)ϵlηl and x� xJe = (x, e)ϵrηr

hold.

5Specifically, discarding the formal specification of E and the inversion operations
(cf. [40, p.287]



CAYLEY THEOREMS FOR LODAY ALGEBRAS 13

Example 2.11. Let E be a set. Then (E,E,�,�,�,�) is a pure grue
with

(2.12) y � x = x = x� y

for all x, y ∈ E.

(a) Note ηl = 1E = ηr, so that (2.12) reduces to (2.10).

(b) Turning to Definition 2.10(b), one has

xIe � x = (e, x)I � x = e� x� x = e

and
x� xJe = x� (x, e)J = x� x� e = e

for e, x ∈ E.

(c) For each element e of E, its right and left orbitoids are {e}.

Example 2.12. Let
(
G, ·, eG, −1

)
be a group. Then (G, {eG}, ·, ·, I, J)

is a pure grue with

I : {eG} ×G → G; (eG, x) 7→ x−1

and
J : G× {eG} → G; (x, eG) 7→ x−1

for all x ∈ G.

(a) Note ηl = ηr =
(
{eG} ↪→ G

)
.

(b) In terms of Definition 2.10(b), one has

xIeG · x = (eG, x)
I · x = x−1 · x = eG

and
x · xJeG = x · (x, eG)J = x · x−1 = eG

for x ∈ G.

(c) The full group G is the right and left orbitoid of eG.

Remark 2.13. (a) The universal algebraic definitions of pregrues and
grues immediately admit the application of standard (multi-sorted)
universal algebra [23] to pregrues and grues. For example, a pregrue
homomorphism

(2.13) f : (S,E,�,�) → (S ′, E ′,�,�)

consists of functions fS : S → S ′ and fE : E → E ′ which respect the
pregrue operations. In particular, it is a disemigroup homomorphism
fS : (S,�,�) → (S ′�,�). A grue homomorphism

f : (S,E,�,�, I, J) → (S ′, E ′,�,�, I, J)
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is a pregrue homomorphism (2.13) that respects (commutes with) the
inversions. Alternatively, one may define the homomorphisms (2.13)
as being the functions whose graphs are subpregrues or subgrues of
(S,E,�,�)× (S ′, E ′,�,�).

In [31], universal-algebraic properties of generalized digroups, such
as the First Isomorphism Theorem, are obtained by means of group
representations of the generalized digroups involved. Now, since the
definition of a generalized digroup implies purity of the corresponding
grues, such results emerge in standard fashion from the multi-sorted
techniques of [23].

(b) Usually, the pregrue operations ηl, ηr : E → S are left implicit: each
element of E is just associated with its images eηl , eηr , and the formal
bar unit identities (2.10) will revert to their informal counterparts (2.2).
Note, however, that the Yoneda pregrue presented in §1.4 has nontrivial
ηl, ηr : f 7→ (1y, f, 1x) for each morphism f : x → y.

(c) Likewise, in normal practice, the grue operations ϵl : E × S → E
and ϵr : S×E → E are surpressed, and the formal inversion properties
(2.11) revert to (2.9).

(d) A grue with no bar units is just a disemigroup, as in Remark 2.4(b).
Purity, as in Remark 2.4(d), would only allow the absence of bar units
from the empty grue.

2.4. Pregrues, grues and one-sided Hopf algebras. Structures
on pregrues and grues, as introduced in the previous section, may be
placed in context by comparison with the one-sided Hopf algebras of
Taft et al. [7, 9, 15, 24, 28]. Working in a category of vector spaces
over a field with tensor product, or in a more general (strict) symmetric
monoidal category, the key definitions of the antipodes in one- or two-
sided Hopf algebras are as follows.

Definition 2.14. Suppose that (S,∇,∆, η, ϵ) is a left- or right-unital
and counital bimagma with a morphism ν : S → S.

(a) The morphism ν : S → S is a left antipode if ϵη = ∆(ν ⊗ 1S)∇.
(b) The morphism ν : S → S is said to be a right antipode if ϵη =

∆(1S ⊗ ν)∇.
(c) The morphism ν : S → S is an antipode if it is both a left and

a right antipode.
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Now, for comparison, the formal inversion identities (2.11) of a grue
may be presented as the commuting diagrams

(2.14) E ⊗ S ⊗ S
I⊗1S // S ⊗ S

�

""E
EE

EE
EE

EE

E ⊗ S

1E⊗∆
88ppppppppppp

ϵl
// E ηl

// S

and

(2.15) S ⊗ E

∆⊗1E &&NN
NNN

NNN
NNN

ϵr // E
ηr // S

S ⊗ S ⊗ E
1S⊗J

// S ⊗ S

�

<<yyyyyyyyy

in the symmetric Cartesian monoidal category of sets. Here, we are
using the tensor product symbol for the Cartesian product, and the
diagonal embedding ∆: S → S ⊗ S.

These same diagrams may be interpreted in the symmetric monoidal
category of vector spaces over a field E, implicitly incorporating its
natural unitor isomorphisms

(2.16) λS : E ⊗ S → S and ρS : S ⊗ E → S .

For left- or right-unital bimagmas (S,�,∆, ηl, ϵl) and (S,�,∆, ηr, ϵr),
the diagrams (2.14) and (2.15) then reproduce the respective left and
right antipode conditions of Definition 2.14(a),(b) for one-sided Hopf
algebras.

In similar fashion, the formal pregrue bar-unit identities (2.10) may
be expressed by the commuting diagrams

(2.17) E ⊗ S
ηl⊗1S //

λS %%KK
KKK

KKK
KKK

S ⊗ S

�

��

and S ⊗ E
1S⊗ηr //

ρS
%%KK

KKK
KKK

KKK
S ⊗ S

�

��
S S

in the symmetric Cartesian monoidal category of sets, interpreting ρS
and λS as the projections to the factor S in the respective Cartesian
products S⊗E and E⊗S. Note that these interpretations of ρS and λS

do not coincide with their usual unitor interpretations, the analogues
of (2.16) in the Cartesian monoidal category of sets, unless E is a
singleton. For example, they reduce to Ø ↪→ S if E is empty.

Once again, the diagrams (2.17) may also be interpreted within the
symmetric monoidal category of vector spaces over a field E, with λS

and ρS as the unitors (2.16). Now, they represent the respective left and
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right unital conditions [9, Def’n. 2.1(a)] that are part of the structure
of left-, right-, or two-sided Hopf algebras.

Finally, of course, commuting of the diagram

S ⊗ S ⊗ S
�⊗1S //

1S⊗�

��

S ⊗ S

�

��
S ⊗ S

�
// S

captures the mixed associative law.

2.5. Undirected replicas. A disemigroup (S,�,�) is undirected if
the identity x � y = x � y is satisfied. Thus undirected disemigroups
are just iterated semigroups, semigroups in which the multiplication
appears twice as a fundamental operation (cf. [29, p.60]). Conversely,
the congruence υ generated by the set

{(x� y, x� y) | x, y ∈ S}
of pairs of elements of a given disemigroup (S,�,�) yields a natural
projection

(2.18) nat υS : (S,�,�) → (Sυ, ·, ·);x 7→ xυ

to the semigroup replica or undirected replica Sυ of the disemigroup S.
The congruence υ itself is known as the undirected replica congruence
(compare [37, p.316], [40, §IV.2.1]).

Lemma 2.15. Let θ : S → T be a disemigroup homomorphism from a
disemigroup S to an iterated semigroup T . Then

Sυ

θυ

  A
AA

AA
AA

A

S
θ

//

nat υS
>>}}}}}}}}

T

with sυ
�

θυ

  @
@@

@@
@@

@

s �
θ

//
@

nat υS

??��������
sθ

factorizes θ.

Note that the formal repetition of the multiplication in an iterated
semigroup is often suppressed, and one refers simply to semigroups.
The usual proof of equality between left and right units in a monoid
yields the following.

Lemma 2.16. Let (S,E,�,�) be a pregrue. Let υ be the undirected
replica congruence of the disemigroup (S,�,�).

(a) Any two elements of E are related by υ.
(b) If E is empty, then the undirected replica (S,E,�,�)υ is a

semigroup.
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(c) If E is nonempty, then the undirected replica (S,E,�,�)υ is a
monoid (Sυ, ·, 1Sυ), with E ⊆ 1Sυ .

Proof. (a): For e, f ∈ E, one has fυ = (e� f)υ = (e� f)υ = eυ.

(b): If E is empty, Remark 2.4(b) applies.

(c): For x ∈ S and e ∈ E, one has

eυ · xυ = (e� x)υ = xυ = (x� e)υ = xυ · eυ

according to the bar-unit identities. □

In the context of Lemma 2.16(c), Proposition 3.21 below shows that
one may have E as a proper subset of the congruence class 1Sυ .

Proposition 2.17. Suppose that (S,E,�,�, I, J) is a grue with a
nonempty set E of bar units. Then the undirected replica Sυ of the
pregrue (S,E,�,�) forms a group (Sυ, ·,−1 , 1Sυ) within which the grue
inversions I or J induce the group inversion.

Proof. The condition

∀ e ∈ E , ∀ x ∈ S , e = xIe � x and x� xJe = e

of (2.9) replicates to

∀ xυ ∈ Sυ , 1Sυ = (xIe)υ · xυ and xυ · (xJe)υ = 1Sυ

in the monoid (Sυ, ·, 1Sυ) of Lemma 2.16(c), for each element e of E.
In particular, each element xυ of Sυ is invertible. Thus the monoid Sυ

coincides with its group of units, where inversion is given by

(2.19) (xυ)−1 = (xIe)υ = (xJe)υ

for each xυ ∈ Sυ and e ∈ E. □

2.6. Semigroups in infinitesimal categories. Let (V,⊗, I) be a
symmetric monoidal category, having finite coproducts (including the
initial object ⊥) that are preserved by the monoidal product. Such
categories will often be described simply as tensor categories. The
infinitesimal category VM of V has V-morphisms p : U → D as its
objects, with U “upstairs” and D “downstairs” [18]. The morphisms
f : p1 → p2 of VM have V-morphisms f / : U1 → U2 upstairs and
f/ : D

1 → D2 downstairs, with p1f/ = f /p2. It is often convenient to
suppress the decoration of the symbol f here.
The infinitesimal category is endowed with a symmetric monoidal

structure (VM,□,⊥ → I). Downstairs, □ = ⊗. Upstairs, p1□p2 has
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U1 ⊗D2 +D1 ⊗ U2, with

p1□p2 =

{
p1 ⊗ 1D2 : U1 ⊗D2 → D1 ⊗D2 ;

1D1 ⊗ p2 : D1 ⊗ U2 → D1 ⊗D2 .

This structure has been motivated nicely in terms of chain complexes
[14, Rem. 2.2]. An alternative approach uses simplicial objects, with a
pair of morphisms from upstairs to downstairs [21].

Let µ : π□π → π be a semigroup structure in VM on an object
p : S → T . Downstairs, µ/ : T ⊗ T → T ; t1 ⊗ t2 7→ t1 · t2 is a semigroup
in V. Decompose the upstairs V-morphism

µ/ : (S ⊗ T + T ⊗ S) → S

as µ� : S ⊗ T → S and µ� : T ⊗ S → S. In the literature, these
morphisms are recognized as creating a T -bimodule structure on S, and
p : S → T is characterized as a T -bimodule morphism π : TST → TT T

[14, §2.2] [18, §2.3]. The following reformulation shows how bimodule
properties are encoded in universal-algebraic terms by the identities of
a disemigroup (cf. [17, Ex. 2.2(d)],[26],[30]).

Proposition 2.18. Under the products

x� y = (x⊗ yp)µ� and x� y = (xp⊗ y)µ� ,

the V-morphism p : S → T is a homomorphism

p : (S,�,�) → (T, ·, ·)
of disemigroups in V.

Proof. The mixed associativities for the respective right and left module
structures translate to the associativities of the two products. Internal
associativity corresponds to the bimodule property. Finally, the barside
irrelevance is equivalent to the fact that p : S → T is a morphism of
bimodules. □

Conversely, aV-morphism p : S → T that is a homomorphism from a
disemigroup S inV to an iterated semigroup T inV yields a semigroup
structure in the infinitesimal category VM. For a given disemigroup
S, the projection (2.18) from S to its undirected replica represents one
possible choice of infinitesimal category morphism. For pregrues, the
adjoint maps of Definition 4.6 will turn out to be natural candidates.

3. Transformation disemigroups and pregrues

3.1. Left and right actions. Suppose that X is a set. In order to
give a coherent and concurrent account of left and right semigroup,
monoid, and group actions on the set X, it will be convenient to use
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Eulerian functional notation (as in sin θ) for left actions, and algebraic
or diagrammatic notation (as in n! or x−1) for right actions.

An elementary review of the parallel use of these conventions will
prepare for subsequent work. Readers are reassured that our parallel
use will not be as confusing as the juxtaposition of the notation sin2 θ
for the square of the sine of an angle θ against the notation sin−1 θ for
arcsin θ, where csc θ might have been expected!

3.1.1. Transfomation monoids. Write (XX , ·, 1X), or simply XX , for
the monoid of transformations ofX acting on the right; and (XX, ◦, 1X),
or just XX, for the monoid of transformations of X acting on the left.
Consider functions f : X → X;x 7→ xf (instead of xf , we may also

write xf ) and g : X → X. The composition or product in XX , denoted
by · or mere juxtaposition, is specified by the commutative diagram

(3.1) x � f //
�

f ·g   A
AA

AA
AA

A xf
_
g

��
xfg

for each element x of X. The functions and their composition are
written with algebraic or diagrammatic notation.

Now consider functions f : X → X;x 7→ f(x) and g : X → X.
Instead of f(x), we may also write fx. Thus the functions are written
in Eulerian notation. The composition or product in XX, denoted by
◦, is specified by the commutative diagram

(3.2) x � f //
�

g◦f ""E
EE

EE
EE

EE
f(x)
_
g

��
g(f(x))

for each element x of X. Taken abstractly, the monoids XX and XX

are mutual opposites. By the Yoneda Lemma [20], each action is the
monoid of endomorphisms of the other.

3.1.2. Left and right monoid actions. Monoid actions are construed as
universal algebras.

Definition 3.1. Suppose that (M, ·, 1M) is a monoid.

(a) A right M -set (X,M) is a set X that is equipped with a unary
operation m : X → X;x 7→ xm for each element m of M , such
that the mixed associative law

(xm1)m2 = x(m1 ·m2)
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and the unital law x1M = x are satisfied (for all x ∈ X and)
for all m1,m2 in M .

(b) A left M -set (X,M) is a set X that is equipped with a unary
operation m : X → X;x 7→ mx for each element m of M , such
that the mixed associative law

m2(m1x) = (m2 ·m1)x

and the unital law x1M = x are satisfied (for all x ∈ X and)
for all m1,m2 in M .

Lemma 3.2. Suppose that (M, ·, 1M) is a monoid.

(a) Given a right M-set (X,M), define

R(m) : x 7→ xm

for each element m of M , so that xR(m) = xm for x ∈ X.
Then

(3.3) R : M → XX ;m 7→ R(m)

is a monoid homomorphism.
(b) Given a left M-set (X,M), define

L(m) : x 7→ mx

for each element m of M , so that L(m)x = mx for x ∈ X.
Then

(3.4) L : M → XX;m 7→ L(m)

is a monoid homomorphism.

Proof. (a) The mixed associative law yields

xR(m1)R(m2) = (xm1)m2 = x(m1 ·m2) = xR(m1 ·m2)

for all x ∈ X and for allm1,m2 inM . Thus R(m1)R(m2) = R(m1 ·m2).
Together with R(1M) = 1X , this makes (3.3) a monoid homomorphism.

(b) The mixed associative law yields

L(m1) ◦ L(m2)x = m1(m2x) = (m1 ·m2)x = L(m1 ·m2)x

for all x ∈ X and for allm1,m2 inM . Thus L(m1)◦L(m2) = L(m1·m2).
In conjunction with L(1M) = 1X , this ensures that (3.4) is a monoid
homomorphism. □

Proposition 3.3. Suppose that (M, ·, 1M) is a monoid.

(a) Right M-sets are equivalent to monoid homomorphisms (3.3).
(b) Left M-sets are equivalent to monoid homomorphisms (3.4).
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Proof. The passage from a right M -set to the homomorphism (3.3)
is captured by Lemma 3.2(a). In the converse direction, the M -set
(X,M) which corresponds to such a monoid homomorphism is defined
by xm = xR(m) for x ∈ X and m ∈ M . The equivalence between left
M -sets and monoid homomorphisms (3.4) is similarly described. □

3.1.3. Group actions. Write (X!, ·, 1X), or simply X!, for the group of
permutations of X acting on the right; and (!X, ◦, 1X), or simply !X,
for the group of permutations of X acting on the left. Thus X! is the
group of units of XX , while !X is the group of units of XX.

The abstract groups !X andX! are mutual opposites. By the Yoneda
Lemma, each action is the group of automorphisms of the other.

If G is a group, right G-sets correspond to group homomorphisms
R : G → X!, while left G-sets will correspond to group homomorphisms
L : G → !X.

3.2. Commutants.

3.2.1. Polarities. [40, Example III.3.3.2(c)]
Suppose that α ⊆ I × J is a relation between sets I and J . For a

subset S of I, define

S ′ := {j ∈ J | ∀ i ∈ S , (i, j) ∈ α} .

For a subset T of J , define

T ′ := {i ∈ I | ∀ j ∈ T , (i, j) ∈ α} .

Note that s ∈ S implies ∀ j ∈ S ′ , (s, j) ∈ α, so that s ∈ S ′′. Thus
S ⊆ S ′′, and similarly T ⊆ T ′′.

A subset T of J is closed if T = S ′ for some S ⊆ I. Similarly, a
subset S of I is closed if S = T ′ for some T ⊆ J . Then the containment-
reversing (or “antitone”) functions

(3.5) 2I → 2J ;S 7→ S ′ and 2J → 2I ;T 7→ T ′

restrict to mutual bijections (described as Galois correspondences in
general, or polarities in the present context) between the respective
sets of closed subsets of the sets I and J .

3.2.2. Mutual commutativity. Let X be an object of a locally small
category C. Consider the monoid C(X,X) of endomorphisms of the
object X. The symmetric mutual commutativity relation κ is defined
on C(X,X) by

(3.6) (θ, φ) ∈ κ ⇔ θφ = φθ
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for θ, φ in C(X,X). For a set T of endomorphisms of X, the set

T ′ := {φ ∈ C(X,X) | ∀ θ ∈ T , (θ, φ) ∈ κ}
is known as the commutant of the subset T . In particular, {1X} and
Ø′ = C(X,X) are mutual commutants.

Remark 3.4. The “commutant” terminology is standard in functional
analysis, for example in the name of the Double Commutant Theorem
[10, §5.3].

Lemma 3.5. The sets C(X,X) and Cop(X,X) coincide. Then for a
subset T of these sets, the commutants T ′ in C(X,X) and Cop(X,X)
coincide.

Proof. The definition (3.6) is self-dual. □

Lemma 3.6. For T ⊆ C(X,X) = Cop(X,X), the commutant T ′ is a
submonoid of C(X,X) and Cop(X,X).

Proof. Certainly the identity 1X commutes with each element of T .
Now consider an element θ of T , and elements φi of T

′ for i = 1, 2.
Then θφ1φ2 = φ1θφ2 = φ1φ2θ, as required. □

Remark 3.7. More generally, if the category C is enriched over a
symmetric, monoidal category V or (V,⊗, I), then the commutant T ′

is a submonoid in V of the monoid C(X,X) in V. In Lemma 3.6, the
enriching category is the Cartesian monoidal category (Set,×,⊤).

Example 3.8. Let C be a category of vector spaces over a field K.
Consider a permutation representation of a group G on a set Q, with
a corresponding linear representation space X = KQ in C affording a
group representation ρ : G → C(X,X) with image T . Then the subset
T ′ of C(X,X) is the centralizer ring or Vertauschungsring V (G,Q) of
Wielandt [1, §2.1], [37, §6.3], [41].

If M is a monoid, the notation M∗ denotes the group of units (i.e.,
invertible elements) of M . In particular, if X is an object of a locally
small category C, then C(X,X)∗ is the group of automorphisms of the
object X.

Corollary 3.9. For T ⊆ C(X,X)∗, the intersection T ′ ∩C(X,X)∗ is
the centralizer subgroup CC(X,X)∗(T ) of T in the automorphism group
C(X,X)∗ of the object X of C.

3.2.3. Symmetry-breaking. Let X be a set, thus an object of the locally
small category Set of sets. The endomorphism monoid Set(X,X) of
X, as an instance of the monoids C(X,X) considered in §3.2.2, is the
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set of functions from X to X. The monoid Set(X,X) is the monoid
of transformations of X as studied in §3.1.1.

One of the fundamental considerations for the work of this paper
is to respect the left/right symmetry that is inherent to disemigroups.
This symmetry is broken by any particular choice of convention for
functional notation, say Eulerian or algebraic as discussed in §3.1. The
notation Set(X,X) will be used “in the abstract”, independently of
any particular choice that a reader may prefer, or independently of the
default option of algebraic notation adopted in this paper.

Following §3.1, the abstract monoid Set(X,X) will be implemented
concretely as XX to act on X from the right, or XX to act on X from
the left. Similarly, the abstract group Set(X,X)∗ will be implemented
concretely as X! to act on X from the right, or !X to act on X from
the left.

3.2.4. Sets with unary operations. Let X be a set. Let T be a set of
functions from X to X. One then has the “universal algebra” (X,T )
as the carrier set X equipped with the set T of unary operations on
X. Following the default of algebraic notation that was recalled in
§3.2.3, T ⊆ XX . Then there are respective commutants T ′ ⊆ XX and
T ′′ ⊆ XX . These commutants feature prominently in the subsequent
constructions. In particular, the mixed associative law

(hx)g = h(xg) =: hxg

holds for h ∈ T ′, x ∈ X, and g ∈ T ′′. In Theorem 3.10 below, this
mixed associative law yields the internal associative law of a disemi-
group.

3.3. Transformation disemigroups of a set with operations.

3.3.1. The transformation disemigroup.

Theorem 3.10. Let (X,T ) consist of a set X with a set T of unary
operations on X. Consider T ′′ ⊆ XX and T ′ ⊆ XX. Define:

(g1, x1, h1)� (g2, x2, h2) = (g1 · g2, x1g2, h1 ◦ h2) ;(3.7)

(g1, x1, h1)� (g2, x2, h2) = (g1 · g2, h1x2, h1 ◦ h2)(3.8)

on T ′′XT ′ := T ′′ ×X × T ′. Then (T ′′XT ′,�,�) is a disemigroup.

Proof. Consider elements (gi, xi, hi) of T
′′XT ′ with 1 ≤ i ≤ 3.
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(a) First,

(g1, x1,h1)�
(
(g2, x2, h2)� (g3, x3, h3)

)
= (g1, x1, h1)� (g2 · g3, x2g3, h2 ◦ h3)

= (g1 · g2 · g3, h1x2g3, h1 ◦ h2 ◦ h3)

and (
(g1, x1,h1)� (g2, x2, h2)

)
� (g3, x3, h3)

= (g1 · g2, h1x2, h1 ◦ h2)� (g3, x3, h3)

= (g1 · g2 · g3, h1x2g3, h1 ◦ h2 ◦ h3) ,

confirming the validity of the internal associative law.

(b) Next,

(g1, x1,h1)�
(
(g2, x2, h2)� (g3, x3, h3)

)
= (g1, x1, h1)� (g2 · g3, h2x3, h2 ◦ h3)

= (g1 · g2 · g3, h1h2x3, h1 ◦ h2 ◦ h3)

and (
(g1, x1,h1)� (g2, x2, h2)

)
� (g3, x3, h3)

= (g1 · g2, h1x2, h1 ◦ h2)� (g3, x3, h3)

= (g1 · g2 · g3, (h1 ◦ h2)x3, h1 ◦ h2 ◦ h3) .

The commuting of (3.2) then confirms the associativity of the right
directional multiplication. In similar fashion, the associativity of the
left directional multiplication is verified.

(c) Finally, (
(g1, x1,h1)� (g2, x2, h2)

)
� (g3, x3, h3)

= (g1 · g2, h1x2, h1 ◦ h2)� (g3, x3, h3)

= (g1 · g2 · g3, (h1 ◦ h2)x3, h1 ◦ h2 ◦ h3)

and (
(g1, x1,h1)� (g2, x2, h2)

)
� (g3, x3, h3)

= (g1 · g2, x1g2, h1 ◦ h2)� (g3, x3, h3)

= (g1 · g2 · g3, (h1 ◦ h2)x3, h1 ◦ h2 ◦ h3) ,

confirming the validity of the first bar side irrelevance identity. The
validity of the second bar side irrelevance identity follows similarly. □
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3.3.2. Transformation disemigroups.

Corollary 3.11. In the context of Theorem 3.10, suppose that U is
a subsemigroup of T ′′, and V a subsemigroup of T ′. Define the set
UXV := U × X × V . Then (UXV,�,�) is a subdisemigroup of
(T ′′XT ′,�,�).

Corollary 3.12. In the context of Theorem 3.10, suppose that G is a
subsemigroup of T ′′ × T ′. Set

(3.9) XG := {(g, x, h) ∈ T ′′XT ′ | (g, h) ∈ G} .

Then (XG,�,�) is a subdisemigroup of (T ′′XT ′,�,�).

Definition 3.13. Let T be a set of transformations of a set X.

(a) The disemigroup (T ′′XT ′,�,�) of Theorem 3.10 is described
as the transformation disemigroup of the set (X,T ) with unary
operations from T .

(b) Let U be a subsemigroup of T ′′, and let V be a subsemigroup
of T ′. Then the disemigroup (UXV,�,�) of Corollary 3.11 is
described as a (balanced) transformation disemigroup on the set
(X,T ) with unary operations from T .

(c) Let G be a subsemigroup of T ′′ × T ′. Then the disemigroup
(XG,�,�) as appearing in Corollary 3.12 is described as a
transformation disemigroup on the structure (X,T ).

Remark 3.14. The use of the articles in Definition 3.13 is similar to
their usage in distinguishing the permutation group Set(X,X)∗ on a
set X from its subgroups G, whereby such a subgroup G is described
as a permutation group on the set X.

3.3.3. Balancing a transformation disemigroup.

Lemma 3.15. Let T be a set of transformations of a set X. Let G be
a subsemigroup of T ′′ × T ′. Define

(3.10) UG = {g | (g, h) ∈ G} and GV = {h | (g, h) ∈ G} .

(a) The set UG is a subsemigroup of T ′′, and the set GV is a sub-
semigroup of T ′.

(b) The set G is a subsemigroup of UG × GV .

Definition 3.16. Suppose that T is a set of transformations of a set
X. Suppose that G is a subsemigroup of T ′′ × T ′. Then the balanced
transformation disemigroup (UGXGV,�,�) is called the balancing of
the transformation disemigroup (XG,�,�) on the structure (X,T ).
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3.3.4. Undirected replicas. Here, we examine the undirected replicas of
transformation disemigroups, making use of concepts from §2.5. The
terminal object ⊤ of the category of sets is taken as ⊤ = {∗}.
Proposition 3.17. Suppose that (X,T ) consists of a nonempty set
X with a set T of unary operations on X. Consider T ′′ ⊆ XX and
T ′ ⊆ XX. Then the projection

π : T ′′ ×X × T ′ → T ′′ ×⊤× T ′; (g, x, h) 7→ (g, ∗, h)
presents the undirected replica of the disemigroup (T ′′XT ′,�,�) as the
iterated monoid (T ′′, ·, ·)× (T ′, ◦, ◦).
Proof. From the definitions (3.7) and (3.8), it is immediate that π is a
disemigroup homomorphism. The undirected replica congruence υ will
now be shown to be the kernel congruence kerπ of the projection π.

Let (g, x, h) be an element of T ′′XT ′. Let y be an element of X.
Recalling that 1X is an element of the commutant monoids T ′′ and T ′,
we have (

(g, x, h), (g, y, h)
)

(3.11)

=
(
(g, x, 1)� (1, y, h), (g, x, 1)� (1, y, h)

)
∈ υ ,

so kerπ ⊆ υ. Conversely, for elements (g, x, h), (g′, y, h′) of T ′′XT ′, one
has (

(g, x, h)� (g′, y, h′), (g, x, h)� (g′, y, h′)
)

=
(
(g · g′, xg′, h ◦ h′), (g · g′, hy, h ◦ h′)

)
∈ kerπ ,

so υ ⊆ kerπ. □

Corollary 3.18. Suppose that U is a submonoid of T ′′, and that V is
a submonoid of T ′. Then the projection

(3.12) π : U ×X × V → U ×⊤× V ; (g, x, h) 7→ (g, ∗, h)
presents the undirected replica of the disemigroup (UXV,�,�) as the
iterated monoid (U, ·, ·)× (V, ◦, ◦).
Proof. The proof carries through as in the theorem. In particular, since
U and V are monoids, the computation (3.11) is available to show that
kerπ ⊆ υ. □

Corollary 3.18 may break down for general subsemigroups U of T ′′

and V of T ′.

Proposition 3.19. Let X be a set, with an element ∞. Consider the
constant map c∞ : X → X with image ∞, an idempotent element of
Set(X,X). Set U = V = {c∞}. Then the disemigroup (UXV,�,�) is
undirected.
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Proof. Note
(3.13)
(c∞, x, c∞)� (c∞, y, c∞) = (c∞,∞, c∞) = (c∞, x, c∞)� (c∞, y, c∞)

for elements x, y of X. □

Corollary 3.20. If |X| > 1, the projection (3.12) does not present the
undirected replica 1UXV .

An extension of the construction of Proposition 3.19 addresses an
issue that arose in connection with Lemma 2.16(c).

Proposition 3.21. In the context of Proposition 3.19, consider the
subdisemigroup

S = {(1X ,∞, 1X)} ∪ {(c∞, x, c∞) | x ∈ X}

of the transformation disemigroup of (X, {c∞}).
(a) The disemigroup S is an iterated semigroup.
(b) The only bar unit of S is (1X ,∞, 1X).
(c) Setting E = {(1X ,∞, 1X)}, the undirected replica (S,E,�,�)υ

of the pregrue (S,E,�,�) is a monoid (Sυ, ·, 1Sυ), with E as a
proper subset of 1Sυ if |X| > 1.

Proof. Note

(1X ,∞, 1X)� (c∞, x, c∞) = (c∞, x, c∞) = (c∞, x, c∞)� (1X ,∞, 1X) ,
(3.14)

(1X ,∞, 1X)� (1X ,∞, 1X) = (1X ,∞, 1X) = (1X ,∞, 1X)� (1X ,∞, 1X) ,

and
(3.15)
(c∞, x, c∞)� (1X ,∞, 1X) = (c∞,∞, c∞) = (1X ,∞, 1X)� (c∞, x, c∞)

for any x in X.

(a): Follows by (3.13), (3.14), and (3.15).

(b): By (3.14), (1X ,∞, 1X) is a bar unit. By (3.15), it is the only bar
unit. Note (1X ,∞, 1X) = (c∞,∞, c∞) if and only if |X| = 1.

(c): By (a), the monoid (Sυ, ·, 1Sυ) is trivial. Thus 1Sυ = S. By (b), S
properly contains E if |X| > 1. □

The example constructed in Proposition 3.21 deserves a special name,
as it will play a significant role later in distinguishing grue properties
from those of more general pregrues.

Definition 3.22. Let (X,∞) be a pointed set, with |X| > 1.
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(a) The pregrue (S,E,�,�) of Proposition 3.21 is described as an
infinity pregrue.

(b) Elements of X ∖ {∞} are said to be finite.

3.4. Transformation pregrues of a set with operations.

3.4.1. Transformation pregrues.

Proposition 3.23. Let (X,T ) consist of a set X with a set T of unary
operations on X. Consider T ′′ ⊆ XX and T ′ ⊆ XX. Define

EX = {(1X , x, 1X) | x ∈ X}

in the transformation disemigroup T ′′XT ′. Then (T ′′XT ′, EX ,�,�) is
a pregrue.

Proof. One has

(g, x, h)� (1X , e, 1X) = (g · 1X , x1X , h ◦ 1X) = (g, x, h)

and (1X , e, 1X)� (g, x, h) = (1X · g, 1Xx, 1X ◦ h) = (g, x, h)

for each element e of X and element (g, x, h) of T ′′XT ′. □

Corollary 3.24. In the context of Proposition 3.23, suppose that U, V
are respective submonoids of T ′′, T ′. Then (UXV,EX ,�,�) is a sub-
pregrue of (T ′′XT ′, EX ,�,�).

Corollary 3.25. In the context of Proposition 3.23, suppose that G is
a submonoid of T ′′ × T ′. Take XG as in (3.9). Then (XG,EX ,�,�)
is a subpregrue of (T ′′XT ′,�,�). Furthermore, the projection π or

(3.16) πXG : XG → G; (g, x, h) 7→ (g, h)

is a pregrue homomorphism from XG to the iterated monoid G.

Definition 3.26. Consider the context of Proposition 3.23.

(a) The pregrue (T ′′XT ′, EX ,�,�) is the transformation pregrue
of the set (X,T ) with unary operations from T .

(b) Let U be a submonoid of T ′′, and let V be a submonoid of
T ′. Then the pregrue (UXV,EX ,�,�) of Corollary 3.24 is
described as a (balanced) transformation pregrue on (X,T ).

(c) Suppose that G is a submonoid of T ′′ × T ′. Then the dimonoid
(XG,EX ,�,�) appearing in Corollary 3.25 is described as a
transformation pregrue on the set (X,T ).
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3.4.2. Bar units.

Proposition 3.27. Let (X,T ) be a set X equipped with a set T of
unary operations. Then EX = {1X} ×X × {1X} is the full set of bar
units of each transformation pregrue XG on the structure (X,T ).

Proof. Consider an element (a, y, z) of XG. It is a bar unit iff

∀ (g, x, h) ∈ XG , (a, y, z)� (g, x, h) =

(ag, zx, zh) = (g, x, h)(3.17)

and

∀ (g, x, h) ∈ T ′′XT ′ , (g, x, h)� (a, y, z) =

(ga, xa, hz) = (g, x, h) .(3.18)

Since identity elements of monoids are unique, the first components of
(3.17) and (3.18) are satisfied iff a = 1X , while their third components
are satisfied iff z = 1X . Now, under the first condition, the middle
component of (3.18) is satisfied, while the middle component of (3.17)
is satisfied under the second condition. □

Consider a balanced transformation pregrue UXV on (X,T ). By
Corollary 3.18, the projection (3.16) is the undirected replication of
(UXV,�,�). The set EX of bar units of UXV may then be understood
conceptually as follows.

Proposition 3.28. The set of bar units of the balanced pregrue UXV
is the preimage, under the replication, of the identity element of the
replica monoid.

4. Cayley theorems

This section presents the Cayley theorems for disemigroups and pre-
grues.

4.1. Cayley’s Theorem for disemigroups. Soppose that (S,�,�)
is a disemigroup. Define

R�(s) : S → S;x 7→ x� s

and
L�(s) : S → S;x 7→ s� x

for each element s of S. The associative laws for (S,�) and (S,�)
imply that the maps

R� : S → SS and L� : S → SS

are semigroup homomorphisms. The respective images of these two
homomorphisms are the subsemigroups R�(S) of S

S and L�(S) of
SS.
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Lemma 4.1. For all s1, s2 in S, the mutual commutativity

L�(s1)R�(s2) = R�(s2)L�(s1)

holds.

Proof. For each element x of S, the relation

xL�(s1)R�(s2) = (s1 � x)� s2 = s1 � (x� s2) = xR�(s2)L�(s1)

holds by internal associativity. □

Consider the set S equipped with the set R�(S) of transformations.
By the antitone nature of the functions (3.5), R�(S) ⊆ R�(S)

′′, while
L�(S) ⊆ R�(S)

′ by Lemma 4.1.

Theorem 4.2 (Disemigroup Cayley Theorem). Suppose that (S,�,�)
is a disemigroup. There is an injective disemigroup homomorphism

(4.1) β : S → R�(S)SL�(S); s 7→ (R�(s), s, L�(s))

from S to the transformation disemigroup R�(S)SL�(S) on
(
S,R�(S)

)
as specified in Definition 3.13(b).

Proof. If S is empty, then β = 1Ø. Otherwise, for elements s1, s2 of S,
we have

(R�(s1),s1, L�(s1))� (R�(s2), s2, L�(s2))

= (R�(s1) ·R�(s2), L�(s1)s2, L�(s1) ◦ L�(s2))

= (R�(s1 � s2), s1 � s2, L�(s1 � s2))

= (R�(s1 � s2), s1 � s2, L�(s1 � s2)) ,

since s1 � (s2 � s) = (s1 � s2) � s by the associativity of the right
directional multiplication in S, while

(s� s1)� s2 = s� (s1 � s2) = s� (s1 � s2)

for s ∈ S by the associativity of the left directional multiplication in
S and bar side irrelevance. Therefore, with respect to right directional
multiplication, the embedding (4.1) is a homomorphism. With respect
to left directional multiplication, the proof is similar. □

4.2. Cayley’s Theorem for pregrues. The bar unit identities (2.2)
may be cast in the following form.

Lemma 4.3. Let (S,E,�,�) be a pregrue. Then

R�(e) = L�(e) = 1S

for each bar unit e ∈ E.
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For a pregrue (S,E,�,�), set

(4.2) R� = {1S} ∪R�(S) and L� = {1S} ∪ L�(S)

to obtain submonoids R� of SS and L� of SS. Lemma 4.3 shows that
the identity transformation on S already lies in R�(S) and L�(S) if
the pregrue has bar units. On the other hand, the iterated semigroup
of positive integers under addition, for example, has no bar units, but
may still be construed as an impure pregrue (Z+,Ø,+,+). In this case,
R+ = L+ = R+(N).

Theorem 4.4 (Pregrue Cayley Theorem). Let (S,E,�,�) be a pre-
grue. Then the disemigroup homomorphism

(4.3) β : S → R�SL�; s 7→ (R�(s), s, L�(s))

obatined by codomain extension of (4.1) becomes an injective pregrue
homomorphism if its codomain is taken as the transformation pregrue
(R�SL�, ES,�,�) on

(
S,R�(S)

)
.

Proof. For a bar unit e of the pregrue (S,E,�,�), note that

β : e 7→ (R�(e), e, L�(e)) = (1S, e, 1S)

by Lemma 4.3. Thus eβ ∈ ES. □

The Pregrue Cayley Theorem 4.4 may be compared with the Cayley
Theorem for dimonoids that appeared as [43, Th. 3].

Remark 4.5. If E = Ø, then (4.3) essentially reduces to (4.1) when
one disregards any codomain extension. According to Remark 2.4(b),
this case of Theorem 4.4 then subsumes Theorem 4.2.

4.3. The adjoint map of a pure pregrue. Suppose that (S,E,�,�)
is a pure pregrue. Consider the isomorphic copy Sβ of S produced by
the injective homomorphism (4.3) of the Cayley Theorem for pregrues.
Consider the projection

Sβ → (R�, ·)× (L�, ◦);
(
R�(s), s, L�(s)

)
7→

(
R�(s), L�(s)

)
with image monoid

{(
R�(s), L�(s)

) ∣∣ s ∈ S
}
.

Definition 4.6. Let (S,E,�,�) be a pure pregrue. (Thus S and E
are either both empty, or both nonempty.)

(a) The adjoint map of the empty pregrue Ø is the monoidal unit
π : Ø → {1Ø} of the infinitesimal category (SetM,□,⊥ → ⊤).
It is convenient to write Øπ = {(1Ø, 1Ø)}.
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(b) If S is nonempty, its adjoint map is defined to be the surjective
pregrue homomorphism

π : S →
{(

R�(s), L�(s)
) ∣∣ s ∈ S

}
; s 7→

(
R�(s), L�(s)

)
.

Its codomain, a(n iterated) monoid, is written simply as Sπ.

Remark 4.7. For an infinity pregrue (S,E,�,�) as in Definition 3.22,
the adjoint map

S → Sπ : (1X ,∞, 1X) 7→ (1X , 1X), (c∞, x, c∞) 7→ (c∞, c∞)

is distinct from the undirected replication 1S : S → S.

Now consider the transformation pregrue (SSπ, ES,�,�) on the
structure (S,R�) for any pure pregrue S, and the corestricted version

β : S → SSπ; s 7→ (R�(s), s, L�(s))

of the Cayley embedding (4.3).

Proposition 4.8. Let e be a bar unit of a pregrue (S,E,�,�).

(a) The right orbitoid of e is e� S = eR�.
(b) The left orbitoid of e is S � e = L�e.

Proof. The respective equalities follow by
(4.4)
(e� s)β = (1S, e, 1S)�

(
R�(s), s, L�(s)

)
=

(
R�(s), eR�(s), L�(s)

)
and
(4.5)
(s� e)β =

(
R�(s), s, L�(s)

)
� (1S, e, 1S) =

(
R�(s), L�(s)e, L�(s)

)
for s ∈ S, along with the injectivity of β. □

In a nonempty pure pregrue (S,E,�,�), the properties expressed
in Proposition 2.8 may be adapted and strengthened to the following.

Proposition 4.9. For e, f ∈ E, there is a commuting diagram

Sπ

{{xx
xx
xx
xx
x

##F
FF

FF
FF

FF
Sπ

{{xx
xx
xx
xx
x

##F
FF

FF
FF

FF

f � S
L�(e)

// e� S
R�(e)

//

L�(f)
oo

S � e
L�(e)
oo

R�(f)
// S � f

R�(e)
oo

sπ7

{{ww
ww
ww
ww
w �

##F
FF

FF
FF

FF
sπ8

{{xx
xx
xx
xx
x �

##G
GG

GG
GG

GG

f � s � // e� s � //
�oo

s� e
�oo

� // s� f
�oo

of monoid isomorphisms.
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Proof. With e ∈ E fixed, and imaging e � S under β with the Cayley
embedding, the map

Sπ → e� S; sπ 7→ e� s

becomes the well-defined monoid isomorphism

Sπ → (e� S)β;
(
R�(s), L�(s)

)
7→

(
R�(s), eR�(s), L�(s)

)
according to (4.4). The map Sπ → S � e; sπ 7→ s� e images to

Sπ → (S � e)β;
(
R�(s), L�(s)

)
7→

(
R�(s), L�(s)e, L�(s)

)
in similar fashion, according to (4.5). □

Proposition 4.10. Suppose that (S,E,�,�) is a pure pregrue. Then
Sπ is the graph of a monoid isomorphism from R� to L�. In particular,
R�

∼= Sπ ∼= L�.

Proof. If S is empty, the result is true according to the convention of
Definition 4.6(a). Now suppose that s, t ∈ S and e ∈ E. Then

R�(s) = R�(t) ⇒ e� s = e� t
(2.8)⇒ s� e = t� e

⇒ (s� e)β = (t� e)β

⇒ (R�(s), eR�(s), L�(s)
)
= (R�(t), eR�(t), L�(t)

)
⇒ L�(s) = L�(t) ,

and vice versa similarly. □

4.4. The tetraset of a pure pregrue. The adjoint map S
π−→ Sπ of

a pure pregrue (S,E,�,�) is an object of the infinitesimal category
(SetM,□,⊥ → ⊤). This section reviews the structure of π in SetM.
Standard symmetric monoidal category notation will be used for the
Cartesian monoidal structure on Set. Thus the direct product of sets A
and B is written as A⊗B, and an ordered pair (a, b) inside it is written
as a⊗ b. For example, the exchange of components is τ : a⊗ b → b⊗ a.
The notation supports the immediate reinterpretation of the results of
this section in other symmetric monoidal categories.

Full use will be made of the three isomorphic incarnations of Sπ

that are presented in Proposition 4.10: R�, L�, and the graph Sπ of
the isomorphism between them. Thus, with the usual multiplication
∇ : Sπ ⊗ Sπ → Sπ on the monoid Sπ, the diagonal comultiplication
may be implemented by ∆: Sπ → Sπ ⊗ Sπ; sπ 7→ L�(s) ⊗ R�(s), as
in the proof of Lemma 4.14 below. Note that the diagonal is the only
counital comultiplication available in (Set,×,⊤) [39, Lemma 3.9]. In
Lemma 4.11 below, associativity and unitality for (a) and (b) are easily
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verified, as are the dual coassociativity and counitality for (c) and (d).
They also feature in the grue diagrams of §6.6.

In general, given a certain monoid M , the axioms for a left or right
co-M -set are dual to the axioms for a left or right M -set. In particular,
the coaction ∆: M → M ⊗ M and counit ε : M → ⊤ make M a
(“tautological”) co-M -set.

Lemma 4.11. (a) The action αr : S ⊗ Sπ → S; s0 ⊗R�(s1) 7→ s0 � s1
endows S with the structure of a right Sπ-set.

(b) The action αl : S
π ⊗ S → S;L�(s1)⊗ s0 7→ s1 � s0 endows S with

the structure of a left Sπ-set.

(c) The coaction βr : S → S ⊗ Sπ; s 7→ s ⊗ R�(s) endows S with the
structure of a right co-Sπ-set.

(d) The coaction βl : S → Sπ ⊗ S; s 7→ L�(s) ⊗ s endows S with the
structure of a left co-Sπ-set.

Lemma 4.12. (a) The actions αl and αr commute:

Sπ ⊗ S ⊗ Sπ1Sπ⊗αr//

αl⊗1Sπ

�� α
''OO

OOO
OOO

OOO
OO

Sπ ⊗ S

αl

��
S ⊗ Sπ

αr

// S .

(b) The coactions βl and βr commute:

Sπ ⊗ S ⊗ Sπ Sπ ⊗ S
1Sπ⊗βroo

S ⊗ Sπ

βl⊗1Sπ

OO

S .
βr

oo

βl

OO

β

ggOOOOOOOOOOOOO

Here, the diagonal is the Cayley embedding of S in the transformation
pregrue (R�SL�, ES,�,�).

Proof. (a) For s−1, s0, s1 ∈ S, one has

L�(s−1)⊗ s0 ⊗R�(s1)
� 1Sπ⊗αr //

_

αl⊗1Sπ

��

L�(s−1)⊗ (s0 � s1)_

αl

��
(s−1 � s0)⊗R�(s1)

�
αr

// (s−1 � s0)� s1 s−1 � (s0 � s1)

by the internal associativity.
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(b) Note

L�(s)⊗ s⊗R�(s) L�(s)⊗ s�1Sπ⊗βroo

s⊗R�(s)
_

βl⊗1Sπ

OO

s .�
βr

oo
_
βl

OO

�
β

hhRRRRRRRRRRRRRRRR

for s ∈ S. □

Definition 4.13. Suppose that (S,E,�,�) is a pure pregrue. Then
the diagonal

α : Sπ ⊗ S ⊗ Sπ → S;L�(s−1)⊗ s0 ⊗R�(s1) 7→ s−1 � s0 � s1

of Lemma 4.12(a), well-defined by internal associativity, is called the
(Cayley) action or coembedding of the pregrue.

Lemma 4.14. The diagram

S ⊗ Sπ αr //

βl⊗∆

��

S
βl // Sπ ⊗ S

(Sπ ⊗ S)⊗ (Sπ ⊗ Sπ)
1Sπ⊗τ⊗1Sπ

// (Sπ ⊗ Sπ)⊗ (S ⊗ Sπ)

∇⊗αr

OO

commutes.

Proof. For s0, s1 ∈ S, note

s0 ⊗R�(s1)_

��

� // s0 � s1_

��
L�(s0 � s1)⊗ (s0 � s1)

L�(s0) ◦ L�(s1)⊗ (s0 � s1)

L�(s0)⊗ s0 ⊗ L�(s1)⊗R�(s1)
� // L�(s0)⊗ L�(s1)⊗ s0 ⊗R�(s1)

_

OO

using the barside irrelevance for the equality. □

Definition 4.15. (a) [11, §2] Let M be a monoid in a symmetric
monoidal category (V,⊗, I). Let S be an object of V equipped with:

(H1) An associative, unital right action αr : S ⊗M → S;
(H1) An associative, unital left action αl : M ⊗ S → S;
(H2) A coassociative, counital right coaction βr : S → S ⊗M ;
(H2) A coassociative, counital left coaction βl : S → M ⊗ S,
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such that:

(H1′) The actions αl and αr commute: (αl ⊗ 1M)αr = (1M ⊗ αr)αl;
(H2′) The coactions βl and βr commute: βr(βl ⊗ 1M) = βl(1M ⊗ βr);
(H3) For m,n ∈ {l, r}, αm is a homomorphism of coactions βn. In

detail, substituting M for Sπ, the diagrams of §4.5.4 commute.

Then S is an M -tetramodule.

(b) An M -tetramodule in the Cartesian monoidal category (Set,×,⊤)
will be called an M -tetraset.

Remark 4.16. (a) For m = r and n = l, along with M = Sπ, the
condition (H3) is illustrated by the diagram of Lemma 4.14. For m =
n = r, the instance of τ in the proof of the analogous result is merely
the usual swap R�(s0)⊗R�(s1) 7→ R�(s1)⊗R�(s0).

(b) Using Heyneman-Sweedler notation, the four conditions comprising
(H3) are written out as [36, (4.1)–(4.4)].

(c) With M = Sπ, the condition (H1′) is illustrated by the diagram
of Lemma 4.12(a), while the condition (H2′) is illustrated by the outer
square of the diagram of Lemma 4.12(b).

(d) Tetramodules appear in the literature under many different names,
such as “bidimodules” [6], “Hopf bimodules” [19], “two-sided two-
cosided Hopf modules” [33],“4-modules” [35], “bicovariant bimodule”
[42], etc.

Theorem 4.17. Let (S,E,�,�) be a pure pregrue with adjoint map
π : S → Sπ. Then S is an Sπ-tetraset.

Proof. Apply Lemmas 4.11–4.14. Remaining cases of (H3) are handled
by analogy with Lemma 4.14. □

In infinitesimal linear categories, it transpires that tetramodules are
equivalent to bimonoids [14, §2.2], [18, §5.1] (cf. §2.6). On the other
hand, if one takes the infinitesimal category SetM as defined in §2.6,
Theorem 4.17 at best yields the following.

Corollary 4.18. In the infinitesimal category (SetM,□,⊥ → ⊤), the
adjoint map π : S → Sπ gives an associative, coassociative, and unital
bimagma.

The obstruction to counitality arises because the tensor unit Ø ↪→ ⊤
of SetM cannot in general serve as the codomain of a counit ε with
domain π.
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4.5. Pregrue diagrams. This section collates disemigroup structural
features of a pure pregrue (S,E,�,�) in diagrammatic fashion. Just as
disemigroups represent a semigroup structure that has been split into
two halves, these diagrams split diagrams of a bisemigroup structure
(H,∇,∆) into two halves. The left/right symmetry of disemigroups is
displayed by reflection symmetry of the diagrams. In most cases, the
symmetrically invariant part of the diagrams will have a special role to
play, including a depiction of the Cayley Theorems.

The diagrams are formulated in a locally small symmetric monoidal
category (V,⊗,1), which for present purposes is interpreted as the
Cartesian (Set,⊗,⊤). The notations of Definition 2.10(a) and §4.4
are used, along with the bisemigroup structure (Sπ,∇,∆) of Sπ in
(Set,⊗,⊤).

The diagrams, along with their counterparts in §6.6, will lead to the
specification of mathematical objects that are left/right splits of Hopf
algebras (compare Table 1). The general picture (which we refrain from
presenting in the interests of space and concreteness) would replace

S
π−→ Sπ with a general V-morphism.
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4.5.1. The equivariance diagram.

Proposition 4.19. Suppose that (S,E,�,�) is a pure pregrue. Then
the diagram

Sπ ⊗ S
1Sπ⊗π//

αl

��

Sπ ⊗ Sπ

∇
��

S ⊗ Sππ⊗1Sπoo

αr

��
S

π //

βl

��

Sπ

∆
��

S
πoo

βr

��
Sπ ⊗ S

1Sπ⊗π
// Sπ ⊗ Sπ S ⊗ Sπ

π⊗1Sπ

oo

commutes.

Proof. The commuting of the upper right square is verified by the chase

R�(s0)⊗R�(s1)_

∇
��

s0 ⊗R�(s1)
�π⊗1Sπoo

_

αr

��
R�(s0)R�(s1) R�(s0 � s1) s0 � s1

�
π

oo

for s0, s1 ∈ S, which incorporates the associativity of (S,�).
The commuting of the lower right square is verified by the chase

R�(s0)_

∇
��

s0
�πoo
_

βr

��
R�(s0)⊗R�(s0) s0 ⊗R�(s0)

�
π⊗1Sπ

oo

for s0 ∈ S. Commutativity of the left hand squares is verified in similar
fashion. □

Reflection of the equivariance diagram in the vertical axis through
its center interchanges “left” and “right”. Bialgebra structure on Sπ

forms the unique invariant part of the diagram under this symmetry.
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4.5.2. The associativity diagram.

Proposition 4.20. Suppose that (S,E,�,�) is a pure pregrue. Then
by Lemmas 4.11(a),(b) and 4.12(a) the diagram

Sπ ⊗ S ⊗ Sπ

αl⊗1Sπ

wwooo
ooo

ooo
oo

α

��

1Sπ⊗αr

''OO
OOO

OOO
OOO

S ⊗ Sπ

αr

''OO
OOO

OOO
OOO

OOO
Sπ ⊗ S

αl

wwooo
ooo

ooo
ooo

oo

S ⊗ Sπ ⊗ Sπ

αr⊗1Sπ ''OO
OOO

OOO
OOO

1S⊗∇
77ooooooooooo

S Sπ ⊗ Sπ ⊗ S

1S⊗αrwwooo
ooo

ooo
oo

∇⊗1S
ggOOOOOOOOOOO

S ⊗ Sπ

αr

77ooooooooooooo
Sπ ⊗ S

αl

ggOOOOOOOOOOOOO

commutes.

Reflection of the associativity diagram in the vertical axis through its
center interchanges “left” and “right”. The unique invariant part of the
diagram under this symmetry is the Cayley action of Definition 4.13.

4.5.3. The coassociativity diagram.

Proposition 4.21. Suppose that (S,E,�,�) is a pure pregrue. Then
by Lemmas 4.11(c),(d) and 4.12(b), the diagram

Sπ ⊗ S ⊗ Sπ

S ⊗ Sπ

βl⊗1Sπ
77ooooooooooo

1S⊗∆

wwooo
ooo

ooo
oo

Sπ ⊗ S

1Sπ⊗βr

ggOOOOOOOOOOO

∆⊗1S

''OO
OOO

OOO
OOO

S ⊗ Sπ ⊗ Sπ S

β

OO

βr

ggOOOOOOOOOOOOOO

βl

77oooooooooooooo

βrwwooo
ooo

ooo
ooo

o

βl ''OO
OOO

OOO
OOO

OO Sπ ⊗ Sπ ⊗ S

S ⊗ Sπ

βr⊗1Sπ

ggOOOOOOOOOOO

Sπ ⊗ S
1Sπ⊗βr

77ooooooooooo

commutes.

Reflection of the coassociativity diagram in the vertical axis through
its center interchanges “left” and “right”. The unique invariant part of
the diagram under this symmetry is the embedding (4.3) of the Cayley
Theorem 4.4.
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4.5.4. The bimagma diagram.

Proposition 4.22. Suppose that (S,E,�,�) is a pure pregrue. Then
by Theorem 4.17 and Definition 4.15(H3), the diagram

S ⊗ Sπ ⊗ Sπ ⊗ Sπ 1S⊗τ⊗1Sπ // S ⊗ Sπ ⊗ Sπ ⊗ Sπ

αr⊗∇
��

S ⊗ Sπ αr //

βr⊗∆

OO

S
βr // S ⊗ Sπ

S ⊗ Sπ αrβl //

βl⊗∆
SSSS

SSSS
SSSS

SSSS

))SSS
SSSS

SSSS
SSSS

Sπ ⊗ S Sπ ⊗ Sπ ⊗ S ⊗ Sπ∇⊗αroo

1Sπ⊗τ⊗1Sπ

��
Sπ ⊗ S

αlβr

//

∆⊗βr

55kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
S ⊗ Sπ Sπ ⊗ S ⊗ Sπ ⊗ Sπ

αl⊗∇
oo

1Sπ⊗τ⊗1Sπ

OO

Sπ ⊗ S
αl //

∆⊗βl

��

S
βl // Sπ ⊗ S

Sπ ⊗ Sπ ⊗ Sπ ⊗ S
1Sπ⊗τ⊗1S

// Sπ ⊗ Sπ ⊗ Sπ ⊗ S

∇⊗αl

OO

commutes.

Reflection of the bimagma diagram in the horizontal axis through
its center interchanges “left” and “right”. No part of the diagram is
invariant.

5. Invertibility structure in pregrues

This section begins a study of inversion in pregrues.

5.1. Left and right inverses.

Definition 5.1. Let x be an element of a pregrue (S,E,�,�).

(a) The element x is left invertible if there is an element xl of S
such that xl � x is a bar unit. In this case, such elements xl of
S are known as left inverses of x.

(b) The element x is right invertible if there is an element xr of S
such that x� xr is a bar unit. In this case, such elements xr of
S are known as right inverses of x.
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(c) The element x is (bilaterally) invertible if there is an element y
of S that is both a left and a right inverse of x. In this case,
such elements y of S are known as inverses of x.

Remark 5.2. If E = Ø, there are no left, right, or bilaterally invertible
elements.

Lemma 5.3. Bar units of a pregrue (S,E,�,�) are invertible. More
specifically, if e, f ∈ E, then f � e = f and e� f = f , so each bar unit
f is an inverse for every bar unit e.

Lemma 5.4. Let x be an element of a pregrue (S,E,�,�).

(a) If x is right invertible, then xr is left invertible, with xrl = x.
(b) If x is left invertible, then xl is right invertible, with xlr = x.
(c) If x is invertible, with inverse y, then y is also invertible, with

inverse x.

Proof. For each element y of S, one has

y � (x� xr) = y � (x� xr) = y = (x� xr)� y = (x� xr)� y

by bar-side irrelevance, verifying (a). The proof of (b) is similar. Then
(c) follows on setting xr = y in (a) and xl = y in (b). □

Lemma 5.5. Let x1, x2 be elements of a pregrue (S,E,�,�).

(a) If x1, x2 are right invertible, then so are x1 � x2 and x1 � x2,
with (x1 � x2)

r = (x1 � x2)
r = xr

2 � xr
1.

(b) If x1, x2 are left invertible, then so are x1�x2 and x1�x2, with
(x1 � x2)

l = (x1 � x2)
l = xl

2 � xl
1.

(c) If x1, x2 are invertible, then so are x1 � x2 and x1 � x2.

Proof. (a) For i = 1, 2, suppose that xi � xr
i ia a bar unit. Then

(x1 � x2)� (xr
2 � xr

1) = (x1 � x2)� (xr
2 � xr

1)

= x1 � [(x2 � xr
2)� xr

1] = x1 � xr
1 ∈ E .

The proof of (b) is similar, and (c) then follows. □

Lemma 5.6. Let s be an invertible element of a pregrue (S,E,�,�),
with inverse t. Then R�(s) : S → S and L�(s) : S → S are invertible,
with respective inverses R�(t) and L�(t).

Proof. Since s� t is a bar unit, one has

s� (t� x) = (s� t)� x = x

and

x = x� (s� t) = x� (s� t) = (x� s)� t
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for all x in S. Thus L�(s) ◦ L�(t) = 1X and R�(s) · R�(t) = 1X .
Now by Lemma 5.4(c), t is invertible, with inverse s, so it follows that
L�(t) ◦ L�(s) = 1X and R�(t) ·R�(s) = 1X . □

5.2. Invertibility in transformation pregrues. At the outset, it is
worth recalling Proposition 3.27: the set EX = {1X}×X×{1X} is the
full set of bar units of the transformation pregrue (T ′′XT ′, EX ,�,�) on
a set (X,T ) with unary operations from T . The following proposition
uses the notation of (3.10).

Proposition 5.7. Let (XG,EX ,�,�) be a transformation pregrue on
a structure (X,T ), for a submonoid G of (T ′′, ·, 1X)×(T ′, ◦, 1X). Write
G∗ for the groups of units of the monoid G. Consider an element
(g, x, h) of XG.

(a) If the element (g, x, h) is right invertible, then g : X → X is
injective, with a retract in UG, and h : X → X is surjective,
with a section in GV .

(b) If the element (g, x, h) is left invertible, then g : X → X is
surjective with a section in UG, and h : X → X is injective with
a retract in GV .

(c) Suppose that the element (g, x, h) is invertible. Then g : X → X
and h : X → X are bijective, with respective inverses g−1 in UG

∗

and h−1 in GV
∗. Thus (g, h) ∈ G∗, with inverse (g−1, h−1).

Proof. Suppose that (g, x, h) has a right inverse (gr, xr, hr) in XG, so
that

(g, x, h)� (gr, xr, hr) = (g · gr, hxr, h ◦ hr) = (1X , hx
r, 1X) .(5.1)

Then the element g of UG is injective, with retract gr in U . Similarly,
the element h of GV is surjective, with section hr in V . This verifies
(a). The proof of (b) is dual.

Now if (g, x, h) is invertible, it is both left and right invertible. The
bijectivity of g and h then follow by (a) and (b). □

Corollary 5.8. Suppose that (g, x, h) is an invertible element of a
transformation pregrue (XG,EX ,�,�) on a structure (X,T ).

(a) The element (g, x, h) lies in XG∗.
(b) Each element of the set

{(g−1, y, h−1) | (g, h) ∈ G}

may serve as an inverse of (g, x, h) in either transformation
pregrue (XG,EX ,�,�) or (XG∗, EX ,�,�).
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Definition 5.9. Let (XG,EX ,�,�) be a transformation pregrue on
a structure (X,T ). Consider an invertible element (g, x, h) of XG.
Define

(5.2) Ie : XG → XG; (g, x, h) 7→ (g−1, yg−1, h−1)

and

(5.3) Je : XG → XG; (g, x, h) 7→ (g−1, h−1y, h−1)

for each element e = (1X , y, 1X) of EX .

Proposition 5.10. Let (XG,EX ,�,�) be a transformation pregrue
on a structure (X,T ). Consider an invertible element (g, x, h) of XG.
Then in (5.2),

Ie : (g, x, h) 7→ (g−1, yg−1, h−1) = (1X , y, 1X)� (g−1, x, h−1) ,

for each element e = (1X , y, 1X) of EX , so that the image of (g, x, h)
under Ie lies in the right orbitoid XGL�(e). Similarly,

Je : (g, x, h) 7→ (g−1, h−1y, h−1) = (g−1, x, h−1)� (1X , y, 1X)

in (5.3) for each element e = (1X , y, 1X) of EX , so that the image of
(g, x, h) under Je lies in the left orbitoid XGR�(e).

Remark 5.11. Proposition 5.10 motivates the orbitoid terminology
of §2.2. The central component of (g−1, yg−1, h−1) involves elements
from the right orbit of y under T ′′, while the central component of
(g−1, h−1y, h−1) involves elements from the left orbit of y under T ′.

Proposition 5.12. Let (XG,EX ,�,�) be a transformation pregrue
on a structure (X,T ). Consider an invertible element (g, x, h) of XG.

(a) The equations

(g, x, h)Ie � (g, x, h) = (g−1, yg−1, h−1)� (g, x, h) = (1X , y, 1X)

and

(g, x, h)� (g, x, h)Je = (g, x, h)� (g−1, h−1y, h−1) = (1X , y, 1X)

hold for each element e = (1X , y, 1X) of EX .
(b) There is a unique bar unit e such that (g, x, h) ∈ XGIe. Then

I(1X ,xg−1,1X) : (g
−1, z, h−1) 7→ (g, x, h)

for any z ∈ X.
(c) There is a unique bar unit e such that (g, x, h) ∈ XGJe. Then

J(1X ,h−1x,1X) : (g
−1, z, h−1) 7→ (g, x, h)

for any z ∈ X.
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Proof. Part (a) is an immediate calculation. For (b), note that

(5.4) I(1X ,y,1X) : (g
−1, z, h−1) 7→ (g, yg, h) = (g, x, h)

implies y = xg−1. The proof of (c) is similar. □

Proposition 5.12(b),(c) may be compared with [31, Lemma 3], which
was presented in the context of grues.

6. Grues

In this section, the pregrue Cayley Theorem 4.4 is applied to the
study of inversion in pregrues, ultimately providing motivation for the
abstract definition of a grue that was presented in §2.3. As an analogue
of the group of units of a monoid, Theorem 6.9 constructs a grue ℑS
of invertible elements of a pregrue S. Theorem 6.11 shows that each
pure grue is its own grue of invertible elements. The Cayley Theorem
for grues is obtained as an immediate corollary. To begin, we consider
permutation grues on a set with unary operations.

6.1. Permutation grues. Let (XG,EX ,�,�) be a transformation
pregrue on a structure (X,T ). Consider the group G∗ of units of the
monoid G.

Proposition 6.1. The set XG∗ comprises the invertible elements of
the transformation pregrue (XG,EX ,�,�).

Proof. Suppose that (g, x, h) is an invertible element of (XG,�,�).
Then Corollary 5.8 shows that (g, x, h) lies in XG∗.

Conversely, suppose that (g, x, h) lies in XG∗. Thus g−1 ∈ UG
∗ and

h−1 ∈ GV
∗. The element (g−1, x, h−1) then serves as an inverse of

(g, x, h) in XG. □

Definition 5.9 may be used to place an inversion structure on the
subpregrue (XG∗, EX ,�,�) of (XG,EX ,�,�).

Theorem 6.2. Let (XG,EX ,�,�) be a transformation pregrue on a
structure (X,T ). Then the transfomation pregrue (XG∗, EX ,�,�),
which consists of the invertible elements of the transformation pregrue
(XG,EX ,�,�), forms a grue (XG∗, EX ,�,�, I, J) equipped with the
left inversion

I : EX ×XG∗ → XG∗;
(
(1X , y, 1X), (g, x, h)

)
7→ (g−1, yg−1, h−1)

and right inversion

J : XG∗ × EX → XG∗;
(
(g, x, h), (1X , y, 1X)

)
7→ (g−1, h−1y, h−1)

given in parametrized form by (5.2) and (5.3).
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Proof. The grue structure on the pregrue (XG∗, EX ,�,�) is confirmed
by Proposition 5.12(a). □

Definition 6.3. Let (X,T ) be a set X equipped with a set T of unary
operations.

(a) Write (T ′′×T ′)∗ = T ′′∗×∗T ′ andX(T ′′×T ′)∗ = T ′′∗X∗T ′. Then
the grue (T ′′∗X∗T ′, EX ,�,�, I, J) presented by Theorem 6.2 is
described as the permutation grue of, or the symmetric grue
on, the set (X,T ).

(b) Let U be a subgroup of T ′′∗, and let V be a subgroup of ∗T ′.
Then the grue (UXV,EX ,�,�, I, J), presented by Theorem 6.2
as X(U × V ), is described as a (balanced) permutation grue on
(X,T ).

(c) Suppose that G is a subgroup of T ′′ × T ′. Then the grue
(XG,EX ,�,�, I, J) presented by Theorem 6.2 is described as
a transformation grue on the structure (X,T ).

Remark 6.4. (a) If T consists entirely of bijections, then T ⊆ T ′′∗,
and ∗T ′ is the centralizer of T in X!. Two extreme cases are worthy of
note:

(i) If T is empty, or if T = {1X}, then ∗T ′ = X! and T ′′∗ = {1X}.
Then the permutation grue (T ′′∗X∗T ′, EX ,�,�, I, J) gives the
left action of Set(X,X)∗ = !X on X.

(ii) If T = X!, then ∗T ′ = {1X} and T ′′∗ = X!. In this case,
the permutation grue (T ′′∗X∗T ′, EX ,�,�, I, J) gives the right
action of Set(X,X)∗ = X! on X.

(b) The unique permutation grue on (Ø,Ø) or (Ø, 1Ø) is the pure empty
grue (Ø,Ø,�,�, IØ, IØ) with vacuous inversions IØ = 1Ø.

Example 6.5. (a) Let GXH be a bitorsor in the sense of [5, Def’n. 1.1]:
respective commuting left and right regular actions of groups G, H on
a set X. Then GXH is a balanced permutation grue on (X,G).

(b) Let GX be a torsor in the sense of [4, Def’n. 2.1]: a set X with a
regular left action of a group G. Then, in the notation of Remark 6.4,

GX∗G′ is a bitorsor [5, §1.2].

(c) Each bitorsor GXH is naturally isomorphic to GX∗G′ [5, §1.2].

6.2. The grue of invertible elements. Let (S,E.�,�) be a pregrue.
Recall the embedding

(6.1) β : (S,E,�,�) → (R�SL�, ES,�,�); s 7→
(
R�(s), s, L�(s)

)
that is provided by the pregrue Cayley Theorem 4.4. Then the image
(Sβ,Eβ,�,�) forms a subpregrue of R�SL� that is isomorphic to
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S via β. Consider the subpregrue
(
R�

∗SL�
∗, ES,�,�,

)
of R�SL�

provided by Theorem 6.2. The intersection Sβ ∩R�
∗S∗L� then forms

a subpregrue

(6.2) (Sβ ∩R�
∗S∗L�, Eβ,�,�)

of (R�SL�, ES,�,�). Let ℑS or (ℑS,E,�,�) be the preimage of
(6.2) under the pregrue-homomorphic embedding β.

Example 6.6. Consider the iterated semigroup S = (Z+,Ø,+,+) of
positive integers under addition, as discussed in §4.2. In this case, (6.2)
reduces to the pure empty pregrue (Ø,Ø,�,�).

Proposition 6.7. Let s be an element of S. Then s is invertible in
(S,E,�,�) if and only if sβ is an invertible element of ℑSβ.

Proof. If s is invertible, say with inverse t, then sβ =
(
R�(s), s, L�(s)

)
lies in R�

∗S∗L� by Lemma 5.6. Thus sβ is an invertible element of
ℑSβ, with inverse tβ.

Conversely, suppose s is an element of S for which sβ is an invertible
element of ℑSβ. Let tβ =

(
R�(t), t, L�(t)

)
be an inverse of sβ in ℑSβ.

Then sβ � tβ = (1S, s � t, 1S) ∈ Eβ. The central component of this
inclusion implies that s � t ∈ E. Similarly, t � s ∈ E. Thus s is
invertible in (S,E.�,�). □

By Theorem 6.2, the set R�
∗S∗L� is the carrier of a grue structure(

R�
∗S∗L�, ES,�,�, I, J

)
with

I : ES ×R�
∗S∗L� → R�

∗S∗L�;(
(1S, y, 1S), (g, x, h)

)
7→ (g−1, yg−1, h−1)

and

J : R�
∗S∗L� × ES → R�

∗S∗L�;(
(g, x, h), (1S, y, 1S)

)
7→ (g−1, h−1y, h−1)

as the left and right inversions.
The inversions restrict respectively to

Eβ ×ℑSβ → R�
∗S∗L�;(

(1S, e,1S), (R�(s), s, L�(s))
)
7→ (R�(s)

−1, eR�(s)
−1, L�(s)

−1)(6.3)

and

ℑSβ × Eβ →R�
∗S∗L�;(

(R�(s),s, L�(s)), (1S, e, 1S)
)
7→ (R�(s)

−1, L�(s)
−1e, L�(s)

−1)(6.4)

on ℑSβ.
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Lemma 6.8. The images of (6.3) and (6.4) lie in ℑSβ.

Proof. Consider (6.3). Since s is invertible, it has some inverse t in S,
with R�(s)

−1 = R�(t) and L�(s)
−1 = L�(t) by Lemma 5.6. Then:

R�(s)
−1 = R�(t) = R�(e)R�(t) = R�(e� t);

eR�(s)
−1 = eR�(t) = e� t; and

L�(s)
−1 = L�(t) = L�(e)L�(t) = L�(e� t) ,

so

(R�(s)
−1, eR�(s)

−1, L�(s)
−1) =

(
R�(e� t), e� t, L�(e� t)

)
= (e� t)β

as required. The treatment of (6.4) is dual. □

Now (6.1) is injective. Thus, for each pair(
(R�(s), s, L�(s)), (1S, e, 1S)

)
in (6.3) and (6.4), there are unique elements sIℑS

e and sJℑS
e of S such

that

(6.5) β : sIℑS
e 7→ (R�(s)

−1, eR�(s)
−1, L�(s)

−1)

and

(6.6) β : sJℑS
e 7→ (R�(s)

−1, L�(s)
−1e, L�(s)

−1) .

Pulling (6.3) and (6.4) back along β, inversions

(6.7) IℑS : E ×ℑS → ℑS; (e, s) 7→ sIℑS
e

and

(6.8) JℑS : ℑS × E → ℑS; (s, e) 7→ sJℑS
e

are defined such that (6.5) and (6.6) hold for each pair (s, e) ∈ ℑS×E.
In summary, one has the following result.

Theorem 6.9. If (S,E.�,�) is a pregrue, its invertible elements form
a grue (ℑS,E,�,�, IℑS, JℑS).

Example 6.10. Consider the impure pregrue (Z+,Ø,+,+) discussed
in Example 6.6. Its (non-existent) invertible elements form the empty
grue (Ø,Ø,�,�, 1Ø, 1Ø). By Remark 2.13(d),(

Z+,Ø,+,+,Ø ↪→ Z+,Ø ↪→ Z+
)

or
(
Z+,Ø,+,+,Ø,Ø

)
is a grue in its own right.
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6.3. Cayley’s theorem for grues. Example 6.10 shows the necessity
of the purity assumption in the following.

Theorem 6.11. Suppose that (S,E,�,�, I, J) is a pure grue.

(a) The equality

(6.9) (ℑS,E,�,�, IℑS, JℑS) = (S,E,�,�, I, J)

holds.
(b) Let e be a bar unit. Then

(6.10) sIe = eR�(s)
−1 and sJe = L�(s)

−1e

for each element s of S.

Proof. If (S,E,�,�, I, J) is a pure grue, each element is invertible, so
S ⊆ ℑS ⊆ S. The pregrue structures (S,E,�,�) and (ℑS,E,�,�)
thus coincide. In particular, if (S,E,�,�, I, J) is the empty grue, each
side of (6.9) is the empty grue, with vacuous inversions.

Now consider an element s of S and an element e of E. Then

(6.11) IℑS
e β : s 7→

(
R�(s)

−1, eR�(s)
−1, L�(s)

−1
)

by (6.5). On the other hand, the equation sIe � s = e holds in
(S,E,�,�, I, J) by (2.9). Under β, this equation maps to(
R�(s

Ie),sIe , L�(s
Ie)

)
�

(
R�(s), s, L�(s)

)
=

(
R�(s

Ie) ·R�(s), s
IeR�(s), L�(s

Ie) ◦ L�(s)
)
= (1S, e, 1S) ,(6.12)

so

(6.13) Ieβ : s 7→
(
R�(s)

−1, eR�(s)
−1, L�(s)

−1
)

by (6.12). Recalling the injectivity of β, a comparison of (6.11) with
(6.13) shows that the inversions IℑS and I coincide. Moreover, the
first equation of (6.10) is confirmed. Dually, the maps JℑS and J
agree, completing the verification of the equality (6.9) and the second
equation of (6.10). □

Lemma 6.12. Suppose that (S,E,�,�, I, J) is a pure grue. Then
(R�SL�, ES,�,�, I, J) is a permutation grue on

(
S,R�(S)

)
.

Proof. The case of the empty grue is described by Remark 6.4(c). If S
and E are nonempty, so each element of S is invertible, then Lemma 5.6
shows that R�(S) = R� = R�

∗ and L�(S) = L� = ∗L�. In this case,
Theorem 6.2 shows that the transformation pregrue (R�SL�, ES,�,�)
on

(
S,R�(S)

)
becomes a permutation grue (R�SL�, ES,�,�, I, J) on(

S,R�(S)
)
. □
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Theorem 6.13 (Grue Cayley Theorem). Suppose that (S,E,�,�, I, J)
is a pure grue. Then the injective pregrue homomorphism

(6.14) β : S → R�SL�; s 7→ (R�(s), s, L�(s))

of Theorem 4.4 becomes an injective grue homomorphism when its
codomain is taken to be the permutation grue (R�SL�, ES,�,�, I, J)
on

(
S,R�(S)

)
provided by Lemma 6.12.

The Grue Cayley Theorem 6.13 compares with the structure theorem
for digroups that appeared as [12, Th. 4.8], and the Cayley Theorem for
generalized digroups by Rodŕıguez-Neto, Salazar-Dı́az, and Velásquez
[32, Th. 13]..

Example 6.14. The pregrue reduct (Z+,Ø,�,�) of the impure grue
(Z+,Ø,+,+,Ø,Ø) of Example 6.10 embeds (according to Theorem 4.4)
into the transformation pregrue

(
R+(N)Z+L+(N), EZ+ ,�,�

)
, which in

turn has
(
{1Z+}×Z+ ×{1Z+}, EZ+ ,�,�, I, J

)
as its grue of invertible

elements, according to Theorem 6.2. This grue cannot accommodate
the image of the embedding β. Such behavior demonstrates the need
for the purity assumption in the Cayley Theorem for grues.

6.4. The orbitoid groups of a pure nonempty grue. For a pure
grue (S,E,�,�, I, J), the pregrue properties of §4.3 may be refined.
By making use of the Cayley theorem for grues, the results here offer
semantic counterparts to results that were derived in syntactic fashion
in [31].

Proposition 6.15. Let (S,E,�,�, I, J) be a non-empty pure grue.
Consider e ∈ E.

(a) The right orbitoid (e� S,�, e, Ie) of e in S forms a group.
(b) The left orbitoid (S � e,�, e, Je) of e in S forms a group.

Proof. Note eβ = (1S, e, 1S). Then for each element s of S, one has
sβ =

(
R�(s), s, L�(s)

)
and sL�(e)β = (1S, e, 1S)�

(
R�(s), s, L�(s)

)
=(

R�(s), eR�(s), L�(s)
)
. In other words,

(6.15) (e� S)β =
{(

R�(s), eR�(s), L�(s)
) ∣∣ s ∈ S

}
.

Then(
R�(s), eR�(s), L�(s)

)
�

(
R�(s), eR�(s), L�(s)

)
I(1S ,e,1S)

(5.2)
=

(
R�(s), eR�(s), L�(s)

)
�
(
R�(s)

−1, eR�(s)
−1, L�(s)

−1
)

= (1S, e, 1S) ,

along with the usual inversion property of Proposition 5.12(a), shows
that (e � S)β is a group. Since β is an injective homomorphism, it
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follows that e � S is a group. The proof of (b) is similar, noting the
dual version

(6.16) (S � e)β =
{(

R�(s), L�(s)e, L�(s)
) ∣∣ s ∈ S

}
.

of (6.15). □

In a nonempty pure grue (S,E,�,�, I, J), the pregrue properties
from Proposition 4.9 may be strengthened by noting that the diagram is
now located in the category of groups. Proposition 4.8 is strengthened
as follows.

Corollary 6.16. Let e be a bar unit of a grue (S,E,�,�, I, J).

(a) The right orbitoid of e is e� S = eR� = SIe.
(b) The left orbitoid of e is S � e = L�e = SJe.

Proof. The respective right equalities follow by (6.13) and its dual,
together with the injectivity of β. □

A further distinction with the general pregrue situation is highlighted
by the following.

Proposition 6.17. Let s be an element of a pure grue (S,E,�,�, I, J).

(a) There is a unique right orbitoid containing s: the right orbitoid
of e = sR�(s)

−1.
(b) There is a unique left orbitoid containing s: the left orbitoid of

f = L�(s)
−1s.

(c) Suppose that the element s lies in the intersection of the right
orbitoid of a bar unit e with the left orbitoid of a bar unit f .
Then L�(s)

−1eR�(s) = f .

Proof. Using the final orbitoid characterizations from Corollary 6.16,
the existence and uniqueness claims made in (a) and (b) follow from
the Cayley map and Proposition 5.12(b)(c). In the Cayley-embedded
version of S, the latter proposition gives eβ = (1S, sR�(s)

−1, 1S) and
fβ = (1S, L�(s)

−1s, 1S). For (c), one has s = eR�(s) = L�(s)f . □

Definition 6.18. Let (S,E,�,�, I, J) be a pure grue. Define maps

(6.17) εr : S → E and εl : S → E

where, for an element s of S, the bar units sεr = e and sεl = f are
such that s ∈ (e� S) and s ∈ (S � f).

Example 6.19. (a) Let E be a set. In the grue (E,E,�,�,�,�) of
Example 2.11, εl = 1E = εr.

(b) Let G be a group. In the grue (G, {eG}, ·, ·, I, J) of Example 2.12,
εl and εr are the constant map eG.
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Proposition 6.17 stands in sharp contrast with Proposition 4.9 as
applied to the infinity pregrues of Definition 3.22. There, the only
orbitoid elements are the unique bar unit (1X ,∞, 1X), and (c∞,∞, c∞);
the latter is not invertible. Thus if x is finite, the pregrue element
(c∞, x, c∞) does not lie in an orbitoid. In particular, the maps (6.17)
are not available in general pregrues.

Theorem 6.20. The replica congruence of a pure grue is the kernel of
its adjoint map.

Proof. If the grue is empty, the result is trivial. Thus, suppose now
that (S,E,�,�, I, J) is a nonempty pure grue. Since the codomain of
the adjoint map π : S → Sπ is an iterated group, Lemma 2.15 implies
that the replica congruence υ is a subset of ker π.

Conversely, Proposition 6.17(a) shows that

S = { e� s | e ∈ E, s ∈ S } .

Note that for e, f ∈ E and s, t ∈ S, one has

(e� s, f � t) ∈ kerπ ⇒ R�(e� s) = R�(f � t)

⇒ R�(s) = R�(t) ⇒ f � t = fR�(t) = fR�(s) = f � s .

In other words, each element of ker π has the form (e � s, f � s) for
some e, f ∈ E and s ∈ S. By Lemma 2.16(a), one has (e, f) ∈ υ. Then
(e� s, f � s) = (e, f)� (s, s) ∈ υ, so that kerπ is a subset of υ. □

6.5. Bar unitors.

Definition 6.21. Let (S,E,�,�) be a pure pregrue.

(a) The composite

E ⊗ Sπ ηr⊗1Sπ−−−−→ S ⊗ Sπ αr−→ S

is the left bar-unitor λS : E ⊗ Sπ → S; e ⊗ R�(s) 7→ e � s of
(S,E,�,�).

(b) The composite

Sπ ⊗ E
1Sπ⊗ηl−−−−→ Sπ ⊗ S

αl−→ S

is the right bar-unitor ρS : S
π ⊗ E → S;L�(s) ⊗ e 7→ s � e of

(S,E,�,�).

Remark 6.22. If (S,E,�,�) is an infinity pregrue as in Definition 3.22,
there are elements of S that are not of the form e � s for any e ∈ E
and s ∈ S. Thus the left bar-unitor is not surjective in this case.

Proposition 6.23. Let (S,E,�,�, I, J) be a pure grue.
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(a) The left bar-unitor has its dual

S
βr−→ S ⊗ Sπ εr⊗1Sπ−−−−→ E ⊗ Sπ

as a two-sided inverse.
(b) The right bar-unitor has its dual

S
βl−→ Sπ ⊗ S

1Sπ⊗εl−−−−→ Sπ ⊗ E

as a two-sided inverse.

Proof. (a): At the elementary level, one has the diagram

s⊗R�(s)_

εr⊗1Sπ

��
sεr ⊗R�(s)

�

λS

// sεr � s s
�

βr

kkWWWWWWWWWWWWWWWWWWWWWWWWWWW

for s ∈ S, in which the equality follows by Proposition 6.15(a) and
Definition 6.18. In the other direction, one has

e⊗R�(e� s) (e� s)⊗R�(e� s)�εr⊗1Sπoo

e⊗R�(s)
�

λS

// e� s
_
βr

OO

for e ⊗ R�(s) ∈ E ⊗ Sπ. Here, the equality holds by R�(e � s) =
R�(e)R�(s) = R�(s). In each diagram, the starting point of the chase
is boxed for easy location. The proof of (b) is similar. □

6.6. Grue diagrams. This section builds on the foundation of §4.5,
pictorially formulating those additional structural features of a pure
grue (S,E,�,�, I, J) that are not observed in pregrues. Overall, grue
diagrams split the diagrams of a Hopf algebra structure (H,∇,∆, η, ε, ν)
into two halves. The diagrams are again formulated in a locally small
symmetric monoidal category (V,⊗,1), currently interpreted as the
Cartesian (Set,⊗,⊤). The left/right symmetry axis is noted for each
diagram.

The notations of §4.5 are used, along with the Hopf algebra structure
(Sπ,∇,∆, η, ε, ν) of Sπ in (Set,⊗,⊤). Table 1 summarizes how the
grue notation splits the Hopf algebra notation. Replacing the left-
and right-handed structure in the grue diagrams here for S recovers
the usual Hopf algebra diagrams for Sπ (as displayed, for example, in
[39, §2.3]). Given that grue features oftem mix left and right, their
assignment to a left or right side in the table is sometimes arbitrary.
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In relation to the issue discussed at the end of §4.4, the bimonoid
diagrams of counitality and biunitality require grue structure for their
splitting, since the split versions (6.17) of the bimonoid counit ε are
only available in grues. The unitality diagram of Proposition 6.24 works
for pregrues, since it does not require invertibility of the bar-unitors.

Left Hopf Right

αl ∇ αr

βl ∆ βr

ηl η ηr

εl ε εr

J ν I

S Sπ S

E 1 E

λS λSπ ρS

λS ρSπ ρS

Table 1. Splitting Hopf structure to grue structure

6.6.1. The unitality diagram.

Proposition 6.24. Suppose that (S,E,�,�) is a pure pregrue. Then
the diagram

S ⊗ Sπ

αr

((RR
RRR

RRR
RRR

RRR
RR

S ⊗ 1
1S⊗ηoo

ρS
��

1⊗ S
η⊗1S //

λS

��

Sπ ⊗ S
αl

vvlll
lll

lll
lll

lll
l

E ⊗ Sπ

ηr⊗1Sπ

OO

λS

// S S Sπ ⊗ E

1Sπ⊗ηl

OO

ρS

oo

commutes.

Proof. The lower triangles just reflect the definitions of the bar-unitors,
while the upper triangles form part of the tetraset structure. □

Reflection of the unitality diagram in the vertical axis through its
center interchanges “left” and “right”. No part of the diagram remains
invariant.
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6.6.2. The counitality diagram.

Proposition 6.25. Suppose that (S,E,�,�, I, J) is a pure grue. Then
the diagram

S ⊗ Sπ

εr⊗1Sπ

��

1S⊗ε // S ⊗ 1 1⊗ S Sπ ⊗ S

1Sπ⊗εl
��

ε⊗1Soo

E ⊗ Sπ S
λ
−1
S

oo

βr

hhRRRRRRRRRRRRRRRR
ρ−1
S

OO

S
βl

66llllllllllllllll

ρ−1
S

//

λ−1
S

OO

Sπ ⊗ E

commutes.

Proof. The definition and commutativity of the lower triangles is given
by Proposition 6.23, while the upper triangles are part of the tetraset
structure of any pure pregrue. □

Reflection of the counitality diagram in the vertical axis through its
center interchanges “left” and “right”. No part of the diagram remains
invariant.

6.6.3. The biunitality diagram.

Proposition 6.26. Suppose that (S,E,�,�, I, J) is a pure grue. Then
the diagram

S ⊗ Sπ αr //

εr⊗ε

yysss
sss

sss
s

S
βr //

εr

����
��
��
��

S ⊗ Sπ

E ⊗ 1 αr

// E E
1E

oo

ηr
__????????

βr

// E ⊗ 1

ηr⊗η
eeKKKKKKKKKK

1⊗ E
αl // E E

1Eoo βl //

ηl����
��
��
��

1⊗ E

η⊗ηlyysss
sss

sss
s

Sπ ⊗ S

ε⊗εl

eeKKKKKKKKKK

αl

// S

εl

__????????

βl

// Sπ ⊗ S

commutes.

Proof. The commuting of the lower left parallelogram traces to

1⊗ s0εl
� αl // s0εl

L�(s−1)⊗ s0
�

ε⊗εl

ggOOOOOOOOOOO
�

αl

// s−1 � s0
	

εl
ddIIIIIIIIII
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at the elementary level. For the correctness of the action of εl on the
right, note that s0 ∈ S�e implies s−1�s0 ∈ S�e since � is associative.
Other verifications are similar or “trivial”. □

Reflection of the biunitality diagram in the horizontal axis through
its center interchanges “left” and “right”. Reflection in the vertical
axis through its center dualizes.

6.6.4. The antipode diagram.

Proposition 6.27. Suppose that (S,E,�,�, I, J) is a pure grue. Then
the diagram

S ⊗ Sπ 1S⊗ν // S ⊗ Sπ

αr

$$H
HH

HH
HH

HH

S

βr

;;wwwwwwwww
εr

// E ηr
// S .

S

βl ##G
GG

GG
GG

GG
εl // E

ηl // S .

Sπ ⊗ S
ν⊗1S

// Sπ ⊗ S

αl

::vvvvvvvvv

commutes.

Proof. Note

s⊗R�(s)
� 1S⊗ν // s⊗R�(s)

−1

�
αr

''OO
OOO

OOO
OOO

s
7

βr

;;wwwwwwwwwww�
εr

// e �
ηr

// sR�(s)
−1

s �

βl ##H
HH

HH
HH

HH
H
� εl // f � ηl // L�(s)

−1s .

L�(s)⊗ s �
ν⊗1S

// L�(s)
−1 ⊗ s

/ αl

77ooooooooooo

at the elementary level, by Proposition 6.17 and Definition 6.18. □

Reflection of the antipode diagram in the horizontal axis through its
center interchanges “left” and “right”. Reflection in the vertical axis
through its center dualizes.
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6.6.5. Recovering grue structure from diagram data.

Proposition 6.28. Let (S,E,�,�, I, J) be a pure grue. Then the
diagram

S ⊗ Sπ

αr

%%KK
KKK

KKK
KKK

S ⊗ S

�

��

1S⊗πoo S ⊗ S

�

��

π⊗1S // Sπ ⊗ S
αl

yysss
sss

sss
ss

E ⊗ S

ηr⊗πν

OO

I
// S S S ⊗ E

πν⊗ηl

OO

J
oo

commutes.

Proof. For the upper left triangle, note

s0 ⊗ s1
� 1S⊗π // s0 ⊗R�(s1)

� αr // s0 � s1

for s0, s1 ∈ S. For the lower left triangle, note

e⊗R�(s)
−1

�
αr

((PP
PPP

PPP
PPP

P

e⊗ s
_

ηr⊗πν

OO

�
I

// e�R�(s)
−1

for e ∈ E and s ∈ S, using (6.10). The right-hand side triangles are
similar. □

Reflection of the recovery diagram in the vertical axis through its
center interchanges “left” and “right”.

6.7. Convolutions. This section uses the notation and conventions of
the previous section.

Definition 6.29. Suppose that (S,E,�,�) is a pure pregrue. Take
endomorphisms f ∈ V(S, S) and g ∈ V(Sπ, Sπ).

(a) The composite

S
βr−→ S ⊗ Sπ f⊗g−−→ S ⊗ Sπ αr−→ S

is the right convolution f ⊣ g : S → S.
(b) The composite

S
βl−→ Sπ ⊗ S

g⊗f−−→ Sπ ⊗ S
αl−→ S

is the left convolution g ⊢ f : S → S.

If S is undirected, so that S = Sπ, then the right and left convolution
reduce to the usual convolution

Sπ ∆−→ Sπ ⊗ Sπ f⊗g−−→ Sπ ⊗ Sπ ∇−→ Sπ
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forming the multiplication of the convolution monoid
(
V(Sπ, Sπ), ∗, εη

)
of the bimonoid (Sπ,∇,∆, η, ε) [25, Ch. 6].

Proposition 6.30. Suppose that (S,E,�,�) is a pure pregrue. Then
the endomorphism set V(S, S) is a

(
V(Sπ, Sπ), ∗, εη

)
-bimodule under

the left and right convolution actions.

Proof. Note

s⊗R�(s)
� f⊗g // sf ⊗R�(s)

g

_

αr

��
s �

f⊣g
//

_
βr

OO

sfR�(s)
g

and s⊗R�(s)
�g1⊗g2 // R�(s)

g1 ⊗R�(s)
g2

_

∇
��

R�(s)
�

g1∗g2
//

_
∆

OO

R�(s)
g1R�(s)

g2

for s ∈ S, f ∈ V(S, S), and g, g1, g2 ∈ V(Sπ, Sπ), along with the
mirror-image counterparts for the left action. Now, since R�(s)εy =
1 ∈ Sπ, the equations

(6.18) f = f ⊣ εη and f = εη ⊢ f

hold for any endomorphism f : S → S, so V (Sπ, Sπ) acts unitally.
Then, s(f⊣g1)⊣g2 = sf⊣g1R�(s)

g2

= sfR�(s)
g1R�(s)

g2 = sfR�(s)
g1∗g2 = sf⊣(g1∗g2) ,

verifying the mixed associativity of the right action. The left action is
treated similarly. Finally, s(g1⊢f)⊣g2 = sg1⊢fR�(s)

g2

=
(
L�(s)

g1sf
)
R�(s)

g2 = L�(s)
g1
(
sfR�(s)

g2
)
= sg1⊢(f⊣g2)

verifies the internal associativity, the commuting of the left and right
actions. □

Definition 6.31. In the context of (6.18), the map εη : Sπ → Sπ is
called the convolution action bar-unit.

Proposition 6.32. Let (S,E,�,�, I, J) be a pure grue.

(a) The unique solution ξ : S → S to the convolutional equation

1S = ξ ⊣ 1Sπ

is ξ = εrηr.
(b) The unique solution ξ : S → S to the convolutional equation

1S = 1Sπ ⊢ ξ

is ξ = εlηl.
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Proof. It will suffice to prove (a); then (b) is similar. We require

s⊗R�(s)
� ξ⊗1Sπ // sξ ⊗R�(s)_

αr

��
s
_

βr

OO

�
1S

// s sξ � s

for each element s ∈ S. Proposition 6.17(a) and Definition 6.18 thus
yield sξ = sR�(s)

−1 = sεrηr. □

The following provides an alternative formulation for establishing
the antipode diagram.

Corollary 6.33. Suppose that (S,E,�,�, I, J) is a pure grue. Then
the convolution equations

ν ⊢ 1S = εlηl and 1S ⊣ ν = εrηr

hold.

Proof. In
(
V(Sπ, Sπ), ∗, εη

)
, the antipode ν is a two-sided inverse for

1Sπ . Recalling the role of εη as a convolution bar-unit, one then has

1S = 1S ⊣ εη = 1S ⊣
(
ν ∗ 1sπ

)
=

(
1S ⊣ ν

)
⊣ 1sπ ,

whence 1S ⊣ ν = εrηr by Proposition 6.32. The other equation is
obtained in similar fashion. □

Definition 6.34. Let (S,E,�,�, I, J) be a pure grue.

(a) The map ∑
e∈E

Ie|e�S : S → S; s 7→ sR�(s)
−2

is called the (left) local inversion of (S,E,�,�, I, J).
(b) The map ∑

e∈E

Je|S�e : S → S; s 7→ L�(s)
−2s

is called the (right) local inversion of (S,E,�,�, I, J).
(c) In this context, the inversions Ie : S → S and Je : S → S, for

each bar unit e ∈ E, are said to be global.

Remark 6.35. In Definition 6.34, the action of the inversions is given
by (6.10) and Proposition 6.17.
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Proposition 6.36. Let (S,E,�,�, I, J) be a pure grue. Then the
convolution equations∑

e∈E

Ie|e�S = εrηr ⊣ ν = 1S ⊣ ν ⊣ ν

and ∑
e∈E

Je|S�e = ν ⊢ εlηl = ν ⊢ ν ⊢ 1S

recover the local inversions from the structure that is encoded in the
grue diagrams.

Proof. It will suffice to prove the first equation; the second is similar.
Note

s⊗R�(s)
� εrηr⊗ν // e⊗R�(s)

−1

_

αr

��
s
_

βr

OO

� ∑
e∈E Ie|e�S

// sIe eR�(s)
−1

for each e ∈ E and s ∈ (e� S), the equality following by (6.10). □

7. Conclusion and future work

The philosophy underlying this paper has been an insistence on a
complete respect for the symmetries of the objects under study. The
concept of a grue as a replacement for digroups has been founded on the
behavior of the more primitive concepts of disemigroup and pregrue,
using a commuting pair of left and right actions to maintain the full
left/right symmetry. In both pregrues and grues, all the bar units
receive equal treatment. Working in consort, they support the orbitoid
structure which is already present to a certain extent in pregrues. The
orbitoid structure appears in full strength with grues, where it provides
the bar-unitors that are needed to complete the split of the unitality
and counitality diagrams of Hopf algebras.

7.1. Actions on sets. Concepts of permutation actions for digroups
and generalized digroups have recently been presented [8, 27]. Now,
transformation pregrues and permutation grues, as introduced in §3.4
and §6.1 above, may be taken as the codomains of pregrue and grue
homomomorphisms to provide suitable concepts of pregrue and grue
actions on sets. The Cayley Theorems 4.4 and 6.13 for pregrues and
grues are prototypical examples of such actions, on the underlying sets
of the domains of their embeddings β. The set action homomorphisms
should appear within a diagrammatic setting, closely related to Hopf
algebra actions, in an analogue to the way that the Cayley embeddings
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have here been identified as the symmetric part of the coassociativity
diagrams for pregrues and grues.

7.2. Cohomology of pure grues. Loday’s original motivation for the
introduction of his algebras came from homological algebra [16]. Except
for vestiges in the discussion of infinitesimal categories in §2.6, such
considerations have been kept absent from this paper. In connection
with the coquecigrue problem, Mostovoy refers to the

“desire to find a homology theory for groups that would
parallel the Leibniz homology for Lie algebras”

[22]. As a possible framework for a cohomology theory of pure grues
(of course including groups according to Example 2.12), one might
first homogenize them using the techniques of [23], and then consider
monadic (or “triple”) cohomology for the homogenized algebras [3].

7.3. Clones. Definition 3.26(a) established the transformation pregrue
T ′′XT ′ of a set (X,T ) with a set T of unary operations. A particular
basis for a transformation pregrue would be an algebra (X,Θ) of type
τ : Θ → N in the sense of universal algebra, as summarized concisely
in [37, App. B], say. The elements of Θ are described as the basic
operators of the algebra (X,Θ). Each basic operator ω determines a
basic operation

(7.1) ω : Xωτ → X; (x1, . . . , xωτ ) 7→ x1 . . . xωτω

of (X,Θ). Then for each basic operator with 0 < ωτ , for each index
choice 1 ≤ i ≤ ωτ , and for each (ωτ − 1)-tuple

a = (a1, . . . , ai−1, ai+1, . . . , aωτ ) ∈ Xωτ−1 ,

there is a curried version

ωi
a : X → X; (a1, . . . , ai−1, x, ai+1, . . . , aωτ ) 7→ a1 . . . ai−1xai+1 . . . aωτω

of the basic operation (7.1) known as a translation of the universal
algebra (X,Θ). The set TΘ of all translations then constitutes a set
of unary operations on X, and one may consider the transformation
pregrue T ′′

ΘXT ′
Θ of (X,TΘ), the translation pregrue of the universal

algebra (X,Θ).
The commutation relation (3.6) between unary operations θ, φ on a

set X extends naturally to the case of general operations θ : Xm → X
and φ : Xn → X for natural numbers m,n. The extended relation,
described as mutual homomorphism, says that θ is a homomorphism
θ : (X,φ)m → (X,φ) of algebras equipped with a single operator φ, or
equivalently that φ : (X, θ)n → (X, θ) is a homomorphism. Now, for
a set X, consider the disjoint union Υ of the sets Set(Xn, X) for all
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natural numbers n, and the corresponding coproduct υ : Υ → N of the
functions Set(Xn, X) → N;ω 7→ n. On applying the polarity notation
of §3.2.1 to the relation of mutual homomorphism, each subset Σ of Υ
yields a subset Σ′ of Υ that is not only “closed” in the sense of Galois
theory, but also closed under functional composition when interpreted
as a set of operations on the set X. These closed sets of operations and
their cousins (compare [2], say) are known as clones, a name attributed
to P. Hall that predates Lazard’s analyseurs and May’s operads.

Starting from a universal algebra (X,Θ), it then becomes natural to
move beyond its transformation pregrue T ′′

ΘXT ′
Θ with the commuting

monoid actions T ′′
Θ, T

′
Θ, instead considering the mutually homomorphic

algebra structures Θ′′,Θ′ onX. These structures, interpreted in various
monoidal categories, will provide a more general version of Loday’s
algebras.
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