
What is a CSP?

Informally, a Constraint Satisfaction Problem consists of

• a list of variables ranging over a finite domain and

• a set of constraints on those variables.

Problem: can we assign values to all the variables so that all of the constraints are satisfied?

Examples

A system of linear equations is a CSP

a11x1 +a12x2+ · · · +a1nxn = b1

a21x1 +a22x2+ · · · +a2nxn = b2
...

am1x1+am2x2+ · · ·+amnxn = bm

Also, a system of nonlinear equations is a CSP

a11x
2
1x3 + a12x2x3x7 + · · ·+ a1nx4x

3
n = b1

a21x2x5 + a22x2 + · · ·+ a2nx
3
4 = b2

...

am1x3x5x8 + am2x2 + · · ·+ amnxn = bm

For a fixed k, determining whether a graph is k-colorable is a CSP

?
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Algorithms

There is an efficient algorithm (Gaussian elimination) for solving any linear system. That is

There is an algorithm that accepts as input a linear system and decides whether that system has
a solution.

The running time of the algorithm is bounded above by f(s) where f is a polynomial and s is
the size of the system.

The particular system is an instance of the problem LINEAR SYSTEM

Similarly

There is an algorithm that accepts as input a graph and decides whether the graph is 2-colorable.

The running time is bounded by f(s) where f is a polynomial and s is the size of the graph.

The graph is an instance of the problem 2-COLORABILITY.

We say these algorithms run in polynomial time.

No polynomial-time algorithm is known for either NONLINEAR SYSTEM or 3-COLORABILITY.

However, any candidate solution to either of these problems can be checked in polynomial-time.

Thus these problems are solvable in nondeterministic polynomial time.

Let X and Y be two problems. We write X ≤p Y to indicate that Y is at least as hard as X.

Somewhat more precisely: any algorithm for solving Y can be transformed into an algorithm
for X without drastically increasing its running time.

It is possible for X ≤p Y ≤p X. In that case, write X ≡p Y .

P is the class of all problems solvable in polynomial time. Its members are called tractable.

NP is the class of problems solvable in nondeterministic polynomial time.

• P ⊆ NP

• Both P and NP are downsets, i.e., Y ∈ P & X ≤p Y =⇒ X ∈ P

2



The maximal members of NP are called NP-complete.

Both 3-COLORABILITY and NONLINEAR SYSTEM are known to be NP-complete.

$1,000,000 question: P ?
= NP.

If P = NP then all of the above distinctions go away. Almost every problem that mathematicians
actually care about can be solved efficiently. Just build bigger computers.

In particular, this talk becomes pointless. So assume P 6= NP.

Theorem 1 (Ladner, 1975 [9]). If P 6= NP then there are problems in NP − P that are not NP-
complete.

NP−complete

NP

P

If P 6= NP then the
pink area is nonempty.

Formal Definition of CSP

Let D be a set, n a positive integer An n-ary relation on D is a subset of Dn

Reln(D) denotes the set of all n-ary relations on D

Rel(D) =
⋃
n>0

Reln(D)

Let D be a finite set and ∆ ⊆ Rel(D)

CSP(〈D,∆〉) is the problem: instance: A finite set V = { v1, . . . , vn } of variables and a finite
set {C1, . . . , Cm } of constraints

Each constraint Ci is a pair (〈xi1, . . . , xi pi 〉 , δi) in which xi1, . . . , xi pi ∈ V and δi ∈ ∆

Question: Does there exist a mapping f : V → D such that for all i ≤ m, 〈f(xi1), . . . , f(xi p)〉 ∈
δi?

CSP(〈D,∆〉) always lies in NP.

CSP〈D,∆〉 is finitary if ∆ is finite.
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Example: Linear Equations over F2

D = {0, 1} ∆ consists of all relations

δbn,a =
{
〈x1, . . . , xn〉 ∈ Dn : a1x1 + · · · anxn = b

}
Then CSP(〈D,∆〉) is the linear equations problem

Example: 3-colorability

D = {r, g, b}, ∆ = {κ3} κ3 = { (x, y) ∈ D : x 6= y }

Then CSP(〈D,∆〉) is the 3-colorability problem

v
1

v2

v3 v4 v5

v6 V = {v1, . . . , v6} 〈v1, v2〉 ∈ κ 〈v1, v3〉 ∈ κ 〈v1, v4〉 ∈ κ 〈v2, v4〉 ∈ κ
...

〈v5, v6〉 ∈ κ

Schaefer’s Dichotomy

Theorem 2 (Schaefer, 1978 [12]). Let D = {0, 1}. There are six families ∆1, . . . ,∆6 such that

CSP(〈D,∆〉) ∈ P ⇐⇒ ∆ ⊆ ∆i, some i ≤ 6

Otherwise CSP(〈D,∆〉) is NP-complete.

Two Motivating Questions

1. Dichotomy Conjecture Every CSP(〈D,∆〉) either lies in P or is NP-complete.

2. Tractability Problem Characterize those CSPs that lie in P.

Graph Homomorphisms

Well-known fact: A graph G is 3-colorable iff there is a graph homomorphism from G to K3.

Definition 3. Let 〈G,E〉 and 〈H,F 〉 be (di)graphs. A homomorphism is a function f : G → H
such that

(x, y) ∈ E =⇒
(
f(x), f(y)

)
∈ F.
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Remark. This definition makes sense

• for both undirected and directed graphs;

• for graphs with all/some/no loops.

3-Coloring G as a homomorphism to K3

Definition 4. Let H be a digraph. CSP(H) is the problem: Instance: A digraph G Question: Is
there a homomorphism from G to H?

Note that CSP(H) is a constraint satisfaction problem. (The “H-coloring” problem.)

Theorem 5 (Feder and Vardi, 1998 [5]). For every finitary CSP X there is a digraph H such that
X ≡p CSP(H).

The CSP for Graphs

Definition 6. Let H be a digraph.

1. An induced subgraph H ′ is a retract of H if there is r : H → H ′ with r ◦ r = r.

2. A core of H is a minimal retract.

Easy fact: any two cores of H are isomorphic.

H is called a core if H = core(H).

Lemma 7. For any digraph H, CSP(H) ≡p CSP(core(H)).

Theorem 8 (Hell & Nešetřil, 1990 [6]). Let H be an undirected, loopless graph. Then CSP(H) lies
in P if and only if H is bipartite, otherwise it is NP-complete.

Corollary 9. The dichotomy conjecture holds for undirected graphs.

Theorem 10 (Barto, Kozik and Niven, 2008 [1]). Let H be a smooth digraph. If each component
of core(H) is a circle, then CSP(H) ∈ P. Otherwise CSP(H) is NP-complete.

H is smooth if each vertex has an incoming and an outgoing edge.

A circle is a directed cycle with no chords.

Corollary 11. The dichotomy conjecture holds for smooth digraphs.
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Polymorphisms

Definition 12. Let δ ∈ Relk(D) and f : Dn → D. We say f preserves δ if

(a11, . . . , a1k), . . . , (an1, . . . , ank) ∈ δ =⇒(
f(a11, . . . , an1), . . . , f(a1k, . . . , ank)

)
∈ δ

f is an n-ary operation on D.

a11 a12 . . . a1k ∈ δ
a21 a22 . . . a2k ∈ δ
...

...
...

...
an1 an2 . . . ank ∈ δ
↓f ↓f ↓f
? ? . . . ? ∈ δ

Definition 13. Let ∆ be a set of relations on D. Then Pol(∆) denotes the set of all operations
preserving all members of ∆. These are the polymorphisms of ∆.

Let F be a set of operations on D. Then Inv(F ) denotes the set of all relations preserved by
all operations in F .

Theorem 14. Let Γ,∆ ⊆ Rel(D). Then

Pol(Γ) ⊆ Pol(∆) =⇒ CSP(∆) ≤p CSP(Γ).

Note: ∆ is a core iff Pol1(∆) is a set of permutations of D. Pol1(∆) is the set of unary
polymorphisms

One can go back and forth between relational and algebraic structures

Relational Algebraic
〈D,∆〉 −→ 〈D,Pol(∆)〉

〈D, Inv(F )〉 ←− 〈D,F 〉

CSP〈D,∆〉 ≡p CSP〈D, Inv(Pol(∆))〉

Perhaps the expressive power of algebra can be used to classify CSPs.

Notation: CSP(F ) = CSP(Inv(F ))
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Algebraic Facts

Let A and B be algebras

B a subalgebra of A =⇒ CSP(B) ≤p CSP(A).

B a homomorphic image of A =⇒ CSP(B) ≤p CSP(A).

Let ∆ ⊆ Rel(D). For a ∈ D write µa = {a} ∈ Rel1(D) ∆∗ = ∆ ∪ {µa : a ∈ D }.

Every member of Pol(∆∗) is idempotent, that is, f(x, x, . . . , x) = x.

Theorem 15 (Bulatov, Jeavons, Krokhin, 2000 [4]). If ∆ is a core then CSP(∆) ≡p CSP(∆∗).

Corollary 16. For every algebra A, there is an idempotent algebra B such that CSP(A) ≡p

CSP(B).

Corollary 17. For every algebra A, there is an idempotent algebra B such that CSP(A) ≡p

CSP(B).

B is efficiently computable from A.

Thus for our two questions, we can restrict our attention to idempotent algebras.

CSP results for Algebras

Theorem 18 (Jeavons, Cohen, Gyssens, 1997 [7]). If Pol(∆) contains a semilattice operation, then
CSP(∆) ∈ P.

semilattice: x · (y · z) = (x · y) · z, x · y = y · x, x · x = x

Examples: logical ‘∧’, ‘∨’; ‘∩’, ‘∪’, ‘gcd’, ‘lcm’, 〈H,K〉 ∈ Sub(G),. . .

Theorem 19 (Bulatov, 2002 [2]). If Pol(∆) contains a Maltsev operation, then CSP(∆) ∈ P.

Maltsev: q(x, x, y) = q(y, x, x) = y

Examples: groups, quasigroups, Boolean algebras, etc.

Corollary 20. Both 2-COLORABILITY and LINEAR SYSTEM are tractable.

Theorem 21 (Jeavons, Cohen, Gyssens, 1997 (?) [7]). If Pol(∆) contains a majority operation,
then CSP(∆) ∈ P.

majority: m(x, y, y) = m(y, x, y) = m(y, y, x) = y

This gives another proof that 2-COLORABILITY is tractable
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Theorem 22 (Bulatov, Jeavons, Krokhin, 2000 [4]). If ∆ is a core and every polymorphism is
essentially unary, then CSP(∆) is NP-complete.

f is essentially unary if f(x1, . . . , xn) = g(xj) for some unary g and some j ≤ n.

Corollary 23. Both 3-COLORABILITY and NONLINEAR SYSTEM are NP-complete.

maj

Malt

unary

sl

Informal reformulation of the dichotomy conjecture If A has some kind of decent alge-
braic structure then CSP(A) ∈ P otherwise CSP(A) is NP-complete.

Definition 24. Let n > 1. An n-ary operation f is called a weak near-unanimity operation if it
is idempotent and satisfies

f(y, x, x, x, . . . , x) = f(x, y, x, x, . . . , x) = · · ·
= f(x, x, . . . , x, y)

Note that an essentially unary operation (on a nontrivial set) can not be a WNU operation.

Theorem 25 (Bulatov, Larose, Zádori, McKenzie, Maróti [3, 10, 11]). If ∆ is a core and Pol(∆)
has no WNU operation then CSP(∆) is NP-complete.

Reformuated Dichotomy Conjecture

Let ∆ be a core. Then CSP(∆) is tractable if and only if it has a WNU polymorphism.
Otherwise, it is NP-complete.

unary

sl

Malt

maj

WNU

unary

sl

Malt

maj
WNU

unary

sl

Malt

maj
WNU
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Supporting Examples

• Every semilattice and majority op is a WNU.

• Let A be an abelian group, n = |A|. Choose integers k, l with kl ≡ 1 (mod n). Then

f(x1, . . . , xk) = l(x1 + · · ·+ xk)

is a WNU operation.

Binary Operations

A binary operation is WNU if and only if

x · x = x, x · y = y · x.

Problem 26. Assume ∆ is a core and Pol(∆) contains a commutative, idempotent binary opera-
tion. Show CSP(∆) is tractable.

Recall that a semilattice is an associative WNU.

Note that neither idempotence nor commutativity are sufficient individually

A left-zero semigroup (i.e., x · y = x) is idempotent, but not commutative. It clearly has no
WNU.

Let A = 〈{0, 1, 2, 3}, ·〉 with multiplication modulo 4. This operation is commutative but not
idempotent. A has no WNU.

Note that “has a WNU polymorphism” puts no bound on the number of variables. Is this
even decidable?

Theorem 27 (Siggers, Kearnes, Marković, McKenzie, 2008 [13, 8]). Pol(∆) has a WNU if and
only if it has a 4-ary idempotent operation satisfying

t(x, y, z, x) = t(y, z, x, z).
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