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A significant contribution to the analysis of certain as-
pects of the communicating proceases model was made by D.
Benson's proposal to view incompletely specified nondeter-
ministic processes as modules over certain semirings, and
dually as comeodules over corresponding coalgebras. The
effectiveness of the proposal in treating the synthesis of
such processes under mutual communication depended on the
good behaviour of these algebraic systems with respect to
tensor products. The aim of the paper is to draw attension
to the algebraic theory underlying Benson's proposal, the
theory of entropic algebras. Working with entropic algebras
guarantees that tensor products are sufficiently well-
behaved to make Benson's theory work.

1, INTRODUCTION

The communicating processes model is a fundamental object of study
in many areas of application'of‘modern mathematics. Beyond its
familiar use in the analysis of distributed computation [Bpl, M1%,
[(M2], it appears for example in theoretical biclogy in the guise
of neural nete [AA] and genetic néta [Wa, pp. 18 ££f.]. There are
also less obvious applications. In a reversal of the usual teéh—
nigue of hiding internal events to merge communicating processes
into a singie whole, F. ROBERT [Ro, § 1.4] uses the model to study
a single iterative process by viewing it as a network of communi-
cating subprocesses. o ’

A significant contribution to the analysis'of certain aspects
of the'model was made by D. BENSON's stimulating and elegant pro-
posal [Beil, [BM] to view incompletely specitied nondeterministic
procesées ag modules over certain semirings, and dually as como-
duies over corresponding coalgebras. The effectivenegs of the pro-
posal in treating the synthesis of such processes under mutual
communication depended on the good behaviour of these algebraic
systems with respect to tensor products. Part of BENSON's mo-
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tivation was the desire to translate the tensor product formalism
from the real vector spaces used in topelogical dynamics to the
semiring modules ¢f his approach to communicating processes.

The aim of the current paper, inspired by [Be], is to draw
attention to the algebraic theory underlying BENSON!s proposal.
This ig& the theory of entropic algebras -~ algebras in which each
operation is a homomorphism. Examples of entropic algebras are
provided by the semilattices of sccs [Bp, a1-a31,I[M2, Prop. 5.1(2)
(4}1, the modes of [RSl, [sml, &nd vector spaces. Working with
entropic algebras guarantees that tensor products are gsufficiently
well-behavedDD] to make BENSON's theory work. As an indication of
the need for some circumspection when dealing with tensor pxoducts,
note that the tensor product of semigroups is not associative [Gr,
p. 2711, ' '

The basic algebraic theory is presented in the second and third
sections. It is then used in the fourth gection to give a general
formulation of BENSON's proposal. The general formulation avoids
the use of duality made in [Be, pp. 11-12]. The string-reversing
anti-isomorphism turns out to be adequate to change a right como-
dule into a left comodule. This removes the'apparent dependence
on the synchronisation algebra for CCS8 (in the sense of [wWi, 4.4},
enabling other synchronisation algebras {(such as the parallel
compositions "11" and "|11" of HOARE~BROOKES-ROSCOE [Wi, 4.5-61)
to be given the elegant description of [Bel that:avdids'the
spurious elements * and 0 of [Wil. Besides giving a theoretical
underpinning to the Boolean semiring-module treafméﬁEs‘of [Bel,
[BM], the general entropic algebra formulation offers two other
advantages. Firstly, it makes it easy td attempt a translation
of known results from topological dynamics expressed in the langua-
ge_of-vector;spaces {cf. Example 2.1 below) - simply rewkrite them
in|terms of entropic algebras, and interpret them in other varieties
{such as those in further examples of.§ 2). Secondly, it provides
a ready-made framework within which to study extensions of the
technigues of [Bel, [BM] from nondeterministic choices to proba-
bilistic choices (cf. [Kol, [Mn, 2.2], [Ms, 4.3.101) and other
contexts, making it potentially available for a wide variety of
applicatiens to biology éndrother fields, In this way, the formu-
lation suggests a procedure fto establish bridgéé between the
continuous methods, - the stochastic analysis and the boolean ana-
lysis" [Th, p. IX] of communicating processes. Of course, there
are even more general approaéhés available, such as that of bi-
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triples (cf. [Bal, etc.) or commutative theories [Ms], but entropic
algebras have the advantage of providing sufficient generality,
while at the same time remaining concrete enough for the usual

algebraic intuvitions te act as reliable guides.,

2. ENTROPIC ALGEBRAS

This section and the next give illustrations and a brief summary

of those aspects of the theory of entropic algebras that are used
here for studying communicating processes. Most of the results are
well-known "folk theorems" in universal algebra and category theory.
The present applications may prove interesting to specialists in
those disciplines. Further details of the algebraic background

are given in [Ms] and [RS, Chaptér 1].

{a,a) equipped with an operator domain

9 and a type or arity funetion T:Q + N such that each w in

An aglgebra is a set A
@ determines a map

WwT

w:A + A ; {a1,...,an) B oag...a ey,

f:(a,0) + (B,
f:A + B with
in A,

where n = ot . A homomorphism of algebras of
TR =~ N

for all w in

the same type is a set mapping a1...anwf

= a1f...anfw 8 and ™

The direct product (An,ﬂ) has componentwise operations, making
it an algebra of the same type as (A,{) Then (A,8) is said
to be entropie if each w: (A", 0) » (A,0) in ® is a homomorphism.

Varieties ¥V are classes of algebras of the same type closed
under the taking of subalgebras, arbitrary direct products, and
homomorphic images. '

Example 2.1 (Vector spaces). For a field F , vector gpaces A

over F form a variety of entropic algebras of type {{+,2)) 0V
(rx{1}) , where for A in F , ‘
MA+ A ab da

iz the unary operation of scalar multiplication. The effect
(x1,...,xn)w of a derived operation w. on a set '{x1,...,xn}

of arguments from A is a linear combination of the arguments. o
Example 2.2 {Modules over a commutative ring). Example 2.1 may
be generalised by relaxing the requirements on F , soO that it is
merely a commutative ring. One cbtains the variety of modules

over the ring F . The commutativity of F corresponds to
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u:(a,n) + (B, 2} Dbeing a homomorphism for each pair A, u of ele-

ments of F . 0O

Example 2.3 (semilattices). The variety of semilattices is the
variety of algebras (A, .)
tative associative operation. The effect

with a single binary idempotent commu-
(x1,...,xn)w cf a de—

rived operation w on a set {x1,...,xn} of arguments from A

represents a non-empty subset of the arguments. Indeed (x1,...,xn)w
= Yqteee ¥y for {y1,...,yr} c {x1,...,xn} represents
{¥qre-ne¥, - 8

o
Example 2.4 {(Barycentric algebras [RS, 2.11 ). Let I~ =
{jpe RIOD<p < 1} . For p in IO, set p' = 1-p . B bary-
eentric algebra is an algebra (n,1°) of type 1° x {2} , with

p:A2 -+ B ; in Io, satiszing the identities

of idempotence,

(x,y} » xyp for p
xyp = yxp'
xyp2zq = xyz(q/(p'q'}J)(p'q')' of skew-azsceiativity. Semilattices
form a class of barycentric algebras with =yp = 2-y for all p

in 1° . Another important class of barycentric algebras consists
identified in [RS, Ch. 2}. Free barycentric

XXp = X of skew-commutativity, and

of the eonvex sets as
algebras are convex sets. The effect (x1,...,xn)w of a derived
operation w on a set {x1,...,xn} of arguments from a convex
set A represents a probability distribution on the arguments.
XYP represents the distribution with probabili-

and P(y)

In particular,

ties P(x) = 1-p =p . 0O
A semiring [RS, 265]

(R, +)

Example 2.5 (semimodules over semirings).
is an algebra (R,+,.} of type {+,.} = {2} , where
(R,.) are semigroups connected by the distributive laws

x.(y+z) = x.y + x.2 and x.z + v.z . The semiring R
is "with 1" if (R,..1) "with o" if
(R,+,0) is a monoid. Rings are semirings with O . The set z+
of positive integers forms a semiring with 1 under the usual
Distributive lattices, and indeed dissemilattices
Irs, 326), are semirings. Main and Benson [BM] reserve the term
"semiring" for semirings with © and 1 . (R,+) is

of natural numbers under the usual

and

{x+y).2 =
is a monoid, and

operations.

in which
commutative. Thus the set o
operations is a semiring even in this more restrictive sense.
(8,+) , the endomorphism semiring
is the set of semigroup homo-

For an entropic semigroup
(End(sv"') P )
g:{5,+} + (8,%)

or just Ends

morphisms with semiring operations defined by

‘braz of type
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s(6+4) = 86 + g¢ and s(0.¢) = sb¢ for 6, ¢ in Ends and =
in & . A commutative semigroup2 gf,+) is said to be a semimodule
over a semiring (R,+,.) (RS, 3261 if there is a semiring homo-

morphism
with 1

homomorphism
(F,+,.) with

{(R,+,.) » (End(S,+),+,.} . A semimodule over a semniring
is unital if this semiring homomorphism is also a monoid
{R;.,1) = (Ends,.,1)

{F,.)
{(+,2)} U (F x {1}) , generalizing Examples
and 2.2 above. If A

. Semimodules over a semiring
conmutative form a variety of entropic alge-
2.1

is a free algebra in such a variety, then
the effect (x1,...,xn)w of a derived operation w on a set X

= {x1,...,xn} of arguments from A may be interpreted as a non-
deterministic distribution of the arguments [BM, §2.1]. If F 1is
¥ or z+ , the distribution-is a multiset from X , while if F
is a distributive lattice of "conditions" (in Dijkstra's sense
[pil, c£. [BM, §3]1), then the distribution records the conditions
attached to the appearance of each argument. 0o

3, TENSOR PRODUCTS, COALGEBRAS, AND COMODULES

Given algebras M1, seny Mr, N in any variety ¥ , a mapping
f:M.lx...XMr + N ig an »-homomorphism if the mapping
Mi + N ; mil+ (mj,...,mi,...,mr)f

in M,
2

is a_homomorphism for each choice of 1 <1 £ r and m,

for j # i . {This generalizes the concept of an r-multilinear
mapping of vector spaces.) Then the tensor product M10M20...0Mr
of the ordered list of algebras (M1, Mz,..., Mr)

in ¥V with

is an algebra
r—-homomorphigm

mmxn.mr+Mp”.mr:(m,”.mgF+%0n.mr

such that for any r-homomorphism f:M1x...xMr -+ N , there is a
unigue homomorphism E:MTa...@Mr + N such that nf = £ . ([DD,
stl, cf. [Ms, Ex, 3.6.71).

If ¥V is a variety of entropic algebras, then tensor products
are very well-behaved. The technical formulation of this good
behaviour is that the class V of objects together with homo-
morphisms as morphisms forms a
3.4), [Mn, viz. 71, [Ms, Ex,.

product @

a "closed category" [DD, Corollary
3.6.7(c)] under the binary tensor
(as bifunctor] and the free algebra K in V on the

singleton

{1} . This means in particular that s is commutative

and associative, with X as a unit, up to unique natural iso-

morphisms. Given Zralgebras A and B , the natural isomorphism
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A®BSBow A is the "twisting” T:asb + bsa .
Tn a variety ¥ of entropic algebras, a eoalgebra C (cf.

[Be, pp. 6-71, [Sw, pp. 4-51) is a V-algebra C equipped with
homomorphisms A:C » CsC and £:C + K such that the diagram

KaC
e&l
(3.1) > CeC
A Aw1
CoK £ céc O > chcec

lec 1A

commutes, where the sloping maps are the natural igomorphisms
KsC=cC and C=C & K . Given coalgebras C and D in ¥ .
a V-homomorphism £:C ~ D is a coalgebra homomorphism ( cE.

[8w, pp. 13-141) if the diagram

(3.2} £

commutes. A wright C-comodule [(cf. [Be, pp. 8-921, [Sw, p. 301) is
a Y-algebra M with a homomorphism y:M + M 8 C called the
gtructure map such that the diagram

Y

> MasC

(3.3) P Yet

—> MaCsC

MaK <— MaC
(E-1- 18

commutes. A left C-comodule is a y-algebra N with a homo-
morphism ¢:N + C & N (again called the structure map) such that

the diagram

A.B. Romanowska, JD.H. Smith / Communicating Processes 269
KaN
ee

— C8N

=

(3.4)
] ¢ 1 Aet

CéN —»> C2CaN
18¢

commutes. As in (3.1), the sloping maps in (3.3) and (3.4) denote
the natural isomorphisms ¥ & K M and N=Ko® N .

The interpretation of these algebraic abstractions in terms of
communicating processes may be summarized as follows. (More de-
tailed examples are given in the next section.) Coalgebras C, D
represent communications channels, into which messages {(as distri-
butions of strings or traces of events) may be sent ox from which
messages may be received. A right C-~comodule M represents a trans-
mitting machine. An element of M represents a condition of. the’
machine. The structure map Y:M + MaC describes the transition ~
of the transmitter from one.condition to another; during the
transition a message is sent inte C . A left D~comodule N
represents a recelving machine, The structure map ¢:N + D & N
describes the transition of the receiver from one condition to
another; during the transition a message is receiﬁed from D .

A YV-algebra homomorphism e:C & D + K serves to synchronize
communications over the channels € and D . Thus the composition

ved 1‘@eh1N

(3.5) MaeN — MeCoDeN —— > MoKeN MeN

H2

describes the transition of the coupled machines M, N from one
condition to another as a result of synchronized communications:
the message sent by M into C is synchronized with the message
received by N from D . In all this, "conditions" and "messages”
may stand for non-deterministic or probabilistic combinations of
"pure" conditions and messages, according to the variety ¥ of
entropic algebras in which M, N, C and D lie,

4., COMMUNICATING PROCESSES

This section discusses some formulations of communicating pro-
cesses (such as [Be]} in'terms of entropic algebras, Throughout,
let V be a fixed mon-trivial variety of entropic algebras. Let
¥ -beﬁfhe free’ Zfalerra on the singleton {1} . In the context
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of [Be]l, ¥ is the variety of join semilattices with zero, so
that O+x = B ={0,7} . Let R be a given
alphabet. The elements of A represent events. Let D be a
symmetric and reflexive relation on A , known as the dependenocy
{,p} is a "con-
current alphabet" in the sense of [Mz]. Let AP or (AD,.) be
subject to the relations that inde-
pendent events (i.e. events a, b with (a,b) £ D} commute. If
A is finite, then. AD is the "algebra of traces over [(A,D)"

4in the sense of [Mz]. If D=A x A , so that there are no inde-

x = ¥x+0 . Then K is

relation on & . If A is finite, the pair

the monoid generated by A

pendent events, then AD is just the free monoid A* on A .

Let (AD,~) denote the opposite of (AD,. ) , with

(4.1} a~b = b.a .

The identity mapping on A extends to unigue mutually inverse

monoid homomorphisms r:(AD,.) - (AD,~)' and r':(AD,~) - (AD,.)
called reversai, with a1...anf = 8,08, for a; in & . Let
C be the free algebra in V¥V is non-trivial,
AD may be identified with its image in C . The elements of C

D . Note that the multiplication

on A7 , Since ¥V

are V-words in the elements of &
AP x 2P 5 AP extends to a V-homomorphism w:C ¢ C > C .

Suppose that C has a coalgebra structure (¢,h,e) as in (3.1)
with Ay = 1c . For example, suppose that V is a variety of
unital semimodules over a commutative semiring with © and 1 .
{s',s'") for which

. . . * .
Given a string s in A" , the pairs

appears as an argument of the ¥V-word si may represent
factorisations s = s's'" . In (4.2), these pairs are the (si,ti),
1«1 «<n . Take (a* - {1})e = {0} . Such coalgebras
arz ca?led ehoiee ccalgebras [Be], [BM]. Given a choice coalgebra

Cc = (C,A,g) with

slsslf

1 =1 and

(4.2) gh = (s1at1,...,snntn)ws '

where w_ is a derived operation of V¥V depending on & , 2

reversed coalgebra ¢F = (C,A¥,e) may be defined by

(4.3) srAT = (t.‘r.as,[r,...,tnrnsnr)ws H

the commuting of the diagram (3.1) for C , interpreted at the
element level, gives the commuting of the corresponding diagram
on reversing the strings appearing. (Note that, in gene-
is not isomorphic to the coalgebra C .)

U for the coalgeb-

for c©
ral, the coalgebra c*
Define a C(-proceses to be a right C-comodule
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ra (C,A,€)

Communication between processes in [Bel depends on the assign-
ment of left C ~comodules to right C-comodules. This may be done
(without recourse to duality as in [Bel)}) by using string reversal.
Let

(4.4) P:U + UsC ; ub> (u1ac1,...,u 8C_Jw

n n u

be the structure map of the right <C-process U , where W is a
derived operation of ¥V depending on wu . Then the structure map

of a left C -comodule U may be defined by

r r
. : ; Lo [
{4.5) P70 > CTOU ; u (c1reu1, ,cnraun)wu .

The commuting of the diagram (3.3) for the right C-comodule U
interpreted at the element level, gives the commuting of the
corresponding diagram (3.4) for the left cY-comodule U on re-

versing the strings appearing.

The synchronisation of events is achieved by a map
e:A* x A* - K , extended to a g—homomorphiém e:C 8 c¥ = K . One
defines {(s,t)e =1 if s = XX and t = Yqeoe¥y
y; in B U {1} , such that for i =1, ..., n , the events Xy
and ¥y can occur synchronously. Here the following convention

applies: "event a

with Xs

can occur synchronously with 1 ", i.e. (a,1)e
= 1 , means precisely that the event a can occur asynchronously,
independent of other e#ents. If the pair (s,t) . has no such
(s,t})e = 0 . Note that e
need not be a coalgebra homomorphism. even under the synchronisa-
tion algebra for ccs [Wi, 4.4], since the triangle of (3,2) does

not commute.

expression (xn...x1,y1...yn) , then

Suppose given two
ViU > U e C
tic program segment” (in the sense of [BM]) for the communicating

C-processes V, U, with respective structu-

re maps and ¢:V >V e C , A run or "nondeterminis-

pair of processes is then obtained as the ("linear transformation"

[EM]1 or) ¥V-homomorphism £:V ¢ U -+ V 8 U which is the composite
¢owr r 1eee81 -
(4.6) . vVeU >VeCeC o ————VeKelU = VU

as in (3.5).

Example 4.7. Let V denote the machine
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(=], [2]

and let U denote the machine

O— E—() -

et & = {a,bl . Let ¥ be the variety of join semilattices. lLet
Vv be free in ¥ omn {i,t} . As a right C-comodule, suppose that
V has the gtructure map ¢:V > V ¢ € with ¢(i) = iet1 + tea +

teb and ¢(t) = tel . Let U be free in ¥ on {j,u} . As a
right C-comodule, suppose that U has the structure map

P:U + U ® ¢ with ¢(3j) = je1 + usa and P({u) = usl . According
to (4.5), U has a left cF-comodule structure map wr:U +ct e U
with 9%(3) = 18 + asu and ¥*(u) = 1en . Suppose that V and

U communicate over the channel € in such a way that event b
may occur asynchronously, while event a acts as a "handshake"
between V and U . Thus {a,a)e = (b,1)e = (1,ble = (1,1)e =1,
while (x,yle = 0 for other pairs (x,y) in (A U {1Dh=x{a v {1}).
A run of the pair V & U of communicating machines starting from
the (deterministic) initial condition iej is then described by
(4.6) as follows. Under ¢ & y° , the element iej of V e U is
mapped to the element (is1 + tea + tsh) & (18] + asu) = islels]

+ tesaslej + tesbelej + isisamu + teasasu + tsbzaszu of

vecosct e U . Under 1sesl , this element is mapped to ialej

+ te0sj + telej + isOeu + teleu + tedesu = isj + t&j + teu in

V 8 U . Thus there are three possible behaviours:

{1} the machines may stay in their initial conditions, without

communicating;

{ii) V may change to its terminal condition t via the asynchro-‘

nous event b ;

(iii) v and U may "shake hands", communicating via the event
a which changes them to their respective terminal conditionsg
£t and u .

It is interesting to contrast this with the description provided
by regarding V and U as (diagrams of) "elementary het systems"
in the sense of [Mz, §4]. The "composition" V + U [Mz, §4.4] is
the net system with diagram
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N
A

Under this composition, the separate identity of V and U has

e
e

been lost. For example, V + U may flow from the initial condition

i of VvV , via event a , to the terminal condition u of U . o

Taking ¥V to be a variety of finitary algebras limits the
C-processes to finitely branching and finitely deep process trees
(in the sense of [Bp, 1.2.1]). One may then extend the study to
possibly infinitely deep trees by taking projective limits of fi-
nitely deep trees, and hence of C-processes, as in [Bp, 1.2.3].
Process graphs with c¢ycles may be bisimulated by infinitely deep
"oovering" trees. This offers an alternative approach to the
countable sums used in [Bel, [BM].
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