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Abstract. As a first step towards a duality theory for central
quasigroups, the paper presents an explicit computation of the
characters of a central pique (quasigroup with pointed idempo-
tent) using Wigner’s “little groups” method. The characters of a
central pique’s cloop (principally isotopic abelian group) form a
dual pique. The conjugacy classes of the dual correspond to the
characters of the primal; indeed the unitary character table of the
dual is the inverse of the unitary character table of the primal.
Together with its dual, a central pique forms a structure known
as the double. The double satisfies identities indexed by loops of
2-power order. These identities project onto the unit circle to yield
identities involving character values.

1. Introduction

Character theory for finite quasigroups was introduced in [6]-[7], [8]-
[13], [19] as an extension of group character theory. Within the latter
theory, the character theory of abelian groups exhibits special features,
generally arising from the duality theory for abelian groups that finds
its fullest and most satisfactory formulation in the topological con-
text of Pontryagin duality for locally compact abelian groups. The
quasigroup analogues of abelian groups are central quasigroups or Z-
quasigroups, those quasigroups for which the diagonal subquasigroup
of the direct square is a normal subquasigroup, i.e. an equivalence
class of a congruence relation on the direct square. One thus expects
the character theory of central quasigroups to exhibit special features
extending those exhibited by abelian groups. The current paper repre-
sents a first step towards the investigation of these special features. To
simplify the presentation, it focusses on central piques. Recall that a
pique is a quasigroup having a pointed idempotent element. Thus one
of the main goals is to provide an explicit determination of the char-
acter table of a finite central pique. In fact each central quasigroup is
centrally isotopic to a central pique [3, Th. III.5.6], and central isotopy
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preserves character tables (cf. [10, §3] and [3, Prop. III.4.6]), so the
work of this paper might be viewed as giving recipes for the charac-
ter tables of general finite central quasigroups. Nevertheless, essential
differences (such as the fact that pique characters take one argument,
while quasigroup characters take two) mean that a satisfactory treat-
ment of the character theory of central quasigroups must wait for a
future paper.

Character tables of central piques have already appeared at various
times in the literature, and there are several possible approaches to
their computation. For example, one may use the fusion geometry of
[10], or Schur rings of abelian groups [1, §II.2.6]. However, these meth-
ods can be somewhat ad hoc in their application. The approach pre-
sented in this paper uses the Wigner-Mackey “little groups” technique
(Section 4) to analyse the permutation character of the natural action
of the multiplication group of a finite central pique (Theorem 5.1). Re-
liance on the group theory rapidly produces the required results, but
the greatest advantages of this approach are the explicit form in which
the character table is presented (Theorem 7.1), and the way in which
the formulation leads naturally to the concept of the dual of a finite
central pique (Section 6). The duality appears in its most striking form
when the character tables are normalized as unitary matrices (3.4). The
unitary character table of the dual of a finite central pique is then just
the inverse of the unitary character table of the primal (Corollary 7.4).
Incidentally, the existence of an association scheme dual to the associ-
ation scheme of a central pique is an immediate consequence of Schur
ring theory [1, Th. 2.6.4]. The dual pique construction shows that
this dual scheme is actually a quasigroup scheme. (Compare [13] for a
discussion of association schemes which may or may not be quasigroup
schemes.)

Together with its dual, a finite central pique forms an object known
as the double (Section 8), consisting of a tensor product of the pique
algebras of the primal and the dual. The double satisfies curious iden-
tities corresponding to each loop of 2-power order (Section 10). The
existence of these identities is significant as the first application of one
area of quasigroup theory to another (as opposed to the involvement
of other parts of mathematics within quasigroup theory, or the appli-
cation of quasigroup theory to an external area such as coding theory
or mathematical physics).

As indicated earlier, the current paper is only intended to be a first
step towards a duality theory for central quasigroups. Among the many
open problems remaining, the following are worthy of mention:
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(1) investigation of the dependencies between the loop-indexed iden-
tities on the double of a finite central pique;

(2) extension of the current theory to the general unpointed case
of finite central quasigroups that do not necessarily contain an
idempotent element;

(3) extension of the current theory from finite (discrete) central
piques to general locally compact central piques or quasigroups.

Concerning Problem 3, recall that Suvorov exhibited a duality for idem-
potent, entropic, locally compact topological quasigroups on the basis
of Pontryagin duality [22].

2. Central piques

This section and the following present a quick summary of the req-
uisite aspects of the theory of quasigroups and their characters. For
concepts and notational conventions not otherwise defined explicitly in
this paper, see [21].

A quasigroup (Q, ·) is a set Q equipped with a binary multiplication
operation denoted by · or simple juxtaposition of the two arguments,
in which specification of any two of x, y, z in the equation x · y = z
determines the third uniquely. In particular, the body of the multi-
plication table of a (finite) quasigroup is a Latin square, while each
Latin square may be bordered to yield the multiplication table of a
quasigroup. Equationally, a quasigroup (Q, ·, /, \) is a set Q equipped
with three binary operations of multiplication, right division / and left
division \, satisfying the identities:

(IL) y \ (y · x) = x;
(IR) x = (x · y)/y;
(SL) y · (y \ x) = x;
(SR) x = (x/y) · y.

(Note that one often suppresses explicit mention of the division op-
erations of a quasigroup, denoting it merely as (Q, ·) instead.) The
equational definition of quasigroups means that they form a variety in
the sense of universal algebra, and are thus susceptible to study by
the concepts and methods of universal algebra [21]. An element e of
a quasigroup Q is said to be idempotent if {e} forms a singleton sub-
quasigroup of Q. A pique or pointed idempotent quasigroup [3, §III.5]
is a quasigroup P , containing an idempotent element 0, that has its
quasigroup structure of multiplication and the divisions enriched by a
nullary operation selecting the idempotent element 0. Note that piques
also form a variety.
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For each element q of a quasigroup (Q, ∗), the right multiplication
R∗(q) or

R(q) : Q→ Q;x 7→ x ∗ q
and left multiplication L∗(q) or

L(q) : Q→ Q;x 7→ q ∗ x

are elements of the group Q! of bijections from the set Q to itself.
The subgroup of Q! generated by all the right and left multiplications
is called the multiplication group MltQ of Q. For a pique P with
pointed idempotent 0, it is conventional to set R = R(0) and L =
L(0). The stabilizer of 0 in the permutation group MltP is called the
inner multiplication group InnP of P . For example, if P is a group,
then the inner multiplication group of the pique P is just the inner
automorphism group of the group P . One thus defines the (pique)
conjugacy classes of a pique to be the orbits of its inner multiplication
group.

A loop L is a pique in which the pointed idempotent element 1 acts
as an identity, so that 1x = x = x1 for all elements x of L. For a
general pique (P, ·, 0), the cloop or corresponding loop is the loop B(P )
or (P,+, 0) in which the “multiplication” operation + is defined by

(2.1) x+ y = xR−1 · yL−1.

Inverting (2.1), the multiplication of a pique is recovered from the cloop
by

(2.2) x · y = xR + yL.

Definition 2.1. A pique (P, ·, 0) is said to be central, or to lie in the
class Z, if:

(1) B(P ) is an abelian group, and
(2) InnP is a group of automorphisms of B(P ).

Remark 2.2. The syntactical Definition 2.1 of pique centrality is cho-
sen for its concreteness, and because it is well suited to the purposes
of the current paper. The equivalence of this definition with the struc-
tural characterization given by normality of the diagonal in the direct
square is discussed in [3, §III.5].

Let P be a central pique. Note that InnP is generated by R and
L. For an element x of P , (2.2) yields L(x) = LL+(xR) and R(x) =
RR+(yL). Identifying MltB(P ) with B(P ) by regularity, one obtains
the following
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Theorem 2.3. The multiplication group MltP of a central pique P is
the split extension of the abelian group B(P ) by the inner multiplication
group InnP.

Example 2.4. The simplest algebraic specification of the dihedral
group Dn is as the multiplication group of the cyclic group Z/nZ con-
sidered as a central pique under the operation of subtraction [21, Ch.
I, Ex. 2.1.2].

3. Quasigroup characters

If A is an abelian group, then the dual or character group is the set

Â of abelian group homomorphisms from A into the circle group S1 of
unit modulus complex numbers under multiplication. The dual group
carries the abelian group operation defined by (α+β)(a) = α(a)β(a) for

α, β ∈ Â and a ∈ A. Recall that each finite abelian group is isomorphic
to its dual [5, V.6.4(b)].

Following the classical extension of character theory by Frobenius,
Schur, et al. from abelian to finite non-commutative groups, a further
extension to finite quasigroups was obtained using the theories of as-
sociation schemes and S-rings [6], [8]-[13], [19]. (Note that character
theory and ordinary representation theory, which are virtually indis-
tinguishable in the usual treatments given for finite groups, diverge for
finite quasigroups.)

Let G be the multiplication group of a quasigroup Q of finite or-
der n. Let {C1, C2, . . . , Cs} be the orbits of G in its diagonal action
on Q2, numbered so that C1 is the diagonal orbit or equality rela-
tion. These orbits are known as the (quasigroup) conjugacy classes of
Q. Let {A1 = In, A2, . . . , As} be the incidence matrices of the quasi-
group conjugacy classes. Then the linear span of these matrices in the
algebra of n × n complex matrices is a commutative algebra, the cen-
tralizer ring or Vertauschungsring V (G,Q) of G in its multiplicity-free
action on Q. Diagonalizing the algebra V (G,Q), one obtains a basis
{E1 = Jn/n,E2, . . . , Es} for V (G,Q) consisting entirely of idempotent
matrices, with Jn as the n× n all-ones matrix.

Set |Ci| = nni and trEi = fi for 1 ≤ i ≤ s. Suppose

(3.1) Ai =
s∑

j=1

ξijEj

and

(3.2) Ei =
s∑

j=1

ηijAj
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for 1 ≤ i ≤ s. Then ξjifi = ηijnnj for 1 ≤ i, j ≤ s. The character table
of Q is defined to be the s× s matrix Ψ with entries

(3.3) ψij =

√
fi

nj

ξji =
n√
fi

ηij

for 1 ≤ i, j ≤ s. For a pique P , the i-th irreducible character is the
function ψi : P → C with ψi(p) = ψij for (0, p) ∈ Cj. If P is a group,
then this definition agrees with the usual group-theoretic concept, ψ1

being the trivial character [1, Th. 2.7.2]. In fact, the most natural
normalization is obtained by considering the s × s-matrix U whose
i, j-entry is

(3.4) Uij =

√
fi

nnj

ξji =

√
nnj

fi

ηij

[4, (A.8)][20, (4.7)]. This unitary matrix, known as the unitary char-
acter table of P , has an interpretation in terms of quantum mechanics
[20].

Example 3.1. Continuing Example 2.4, the character table of the
central pique (Z/4Z,−) is

Ψ =

 1 1 1
1 1 −1√
2 −

√
2 0

 .
Consider the conformal field theory describing the scaling limit of the
Ising model at the critical point (cf. [2, Ex. 5.2.12] or [14]). This
theory has three physical representations ρ0, ρ1, ρ1/2, with respective

statistical dimensions 1, 1,
√

2 ([2, Ex. 11.3.22] or [14, (1.57)]). These
statistical dimensions are the dimensions of the irreducible characters
ψ1, ψ2, and ψ3 of (Z/4Z,−). The centraliser ring of (Z/4Z,−) yields
the fusion rules of the conformal field theory under the assignments
ρ0 7→ A1, ρ1 7→ A2, ρ1/2 7→ A3/

√
2.

4. The little groups method

This section recalls the details and conventions of the Mackey/Wigner
“little groups method” [17, §8.2]. Suppose that a group G is a semidi-
rect product of a normal abelian subgroup A with a subgroup H. (In
the application of Section 5 below, guaranteed by Theorem 2.3, G will
be the multiplication group of a central pique with cloop A and inner
multiplication group H.) The group G has a right action on A by

conjugation, and a left action on the dual group Â of A by

(4.1) G× Â→ Â; (g, α) 7→ ( gα : a 7→ α(ag)).
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Consider the restriction of the action (4.1) to the subgroup H. Let

(4.2) {αi | i ∈ H \ Â}

be a set of orbit representatives for the restricted action. For i ∈ H \Â,
let Hi be the stabilizer of αi in H, and let Gi = AHi. Extend the
domain of αi : A→ S1 to Gi by

(4.3) αi(ah) = αi(a)

for a ∈ A and h ∈ Hi, thereby obtaining a linear character of Gi. For
each irreducible character ρ : Hi → C of Hi, let ρ̃ be the irreducible
character of Gi obtained by composition with the natural projection
Gi → Hi. Finally, let θi,ρ be the (irreducible) character of G obtained
by induction from the irreducible character αi ⊗ ρ̃ of Gi. One then has
the following

Theorem 4.1. Each irreducible character of G is obtained in unique
fashion as θi,ρ.

5. Permution character of the multiplication group

This section uses the little-groups method to analyze the permuta-
tion character of the natural action of the multiplication group of a
finite central pique.

Theorem 5.1. For a finite central pique P , with multiplication group

G and inner multiplication group H, let H act from the left on B̂(P )

by hβ(b) = β(bh) for h ∈ H, β ∈ B̂(P ), and b ∈ P . Let {β1, . . . βs} be

a set of representatives for the orbits of H on B̂(P ). For 1 ≤ i ≤ s,
let Hi be the stabilizer of βi in H, and set Gi = B(P )Hi. Then the
permutation character π = 1 ↑G

H of G on P decomposes into a sum of
irreducible characters as

π =
s∑

i=1

βi ↑G
Gi
.

Proof. Use the “little groups” notation of Section 4. Then by two
applications of Frobenius reciprocity, one has

〈1H ↑G
H , θi,ρ〉G = 〈1H , βi ⊗ ρ̃ ↑G

Gi
↓G

H〉H
= 〈1H , βi ⊗ ρ̃ ↓Gi

Hi
↑H

Hi
〉H

= 〈1Hi
, βi ⊗ ρ〉Hi

for 1 ≤ i ≤ s, the central equality holding by [5, Satz V.16.9(b)] since
G = GiH. By the definition (4.3) of the extension of βi to B(P )Hi,
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the final expression reduces as

1

|Hi|
∑
h∈Hi

(βi ⊗ ρ)(h) =
1

|Hi|
∑
h∈Hi

ρ(h) = 〈1, ρ〉Hi
,

which is 1 for ρ trivial, and 0 otherwise. �

6. The dual of a central pique

Let P be a finite central pique, with multiplication group G, inner
multiplication group H, and pointed idempotent 0. The cloop B(P )

of P is a finite abelian group, with dual abelian group B̂(P ). Let H

act from the left on B̂(P ) by hβ(b) = β(bh) for h ∈ H, β ∈ B̂(P ), and

b ∈ P . One may then define a quasigroup operation on B̂(P ) by

(6.1) ξ · η = Rξ + Lη.

Definition 6.1. The pique P̂ dual to P consists of the set B̂(P )
equipped with the quasigroup operation (6.1), and pointed by the triv-
ial character 0 of B(P ).

The following result is an easy consequence of duality theory for
abelian groups.

Proposition 6.2. Let P be a finite central pique, with inner multipli-
cation group H.

(1) The inner multiplication group of P̂ is isomorphic to H.

(2) The double dual
̂̂
P of P is naturally isomorphic to P .

7. Characters of a central pique

Continuing the notation of the previous two sections, suppose that
the pique conjugacy classes of a finite central pique P are {0} =

D1, D2, . . . , Ds. Suppose that the pique conjugacy classes of P̂ are
{0} = ∆1,∆2, . . . ,∆s. In each case, these classes are the orbits of the
corresponding right or left action of the group H, according to Propo-
sition 6.2 (1). Suppose that βi ∈ ∆i for 1 ≤ i ≤ s. Use regularity to
identify elements of central piques with the corresponding multiplica-
tions in the abelian cloops. The character table of P is then specified
by the following theorem.

Theorem 7.1. For 1 ≤ i, j ≤ s, the i, j-entry of the character table of
the finite central pique P is given by

(7.1) ψij =
1

nj

√
fi

∑
β∈∆i

∑
b∈Dj

β(b).
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Proof. By Theorem 5.1, the complex linear representation of the mul-
tiplication group G of P given by the natural permutation action of
G on P decomposes as a direct sum of mutually inequivalent linear
representations λi for 1 ≤ i ≤ s, the character of each λi being βi ↑G

Gi
.

By [18, Th. 526], for 1 ≤ j ≤ s one has

(7.2) Aj =
s∑

i=1

∑
b∈Dj

λi(R+(b)).

For each 1 ≤ i ≤ s, comparison of (7.2) with (3.1) yields fiξji =
tr ξjiEi =

∑
b∈Dj

trλi(R+(b)) =
∑

b∈Dj
βi ↑G

Gi
(R+(b)). Now by the

definition of character induction,

(7.3) βi ↑G
Gi

(R+(b)) =
1

|Hi|
∑
h∈H

βi(R+(b)h−1

)

for any b in B. Using the action of H on B̂(P ), (7.3) may be rewritten
as

(7.4) βi ↑G
Gi

(R+(b)) =
1

|H|
∑
h∈H

h−1

βi(R+(b)) =
∑
β∈∆i

β(R+(b)).

Thus

ψij =

√
fi

nj

ξji =
1

nj

√
fi

∑
b∈Dj

∑
β∈∆i

β(b),

using the identification provided by the regularity. �

Corollary 7.2. For 1 ≤ i ≤ s, one has fi = |∆i|.

Proof. Set b = 0 in (7.4). �

Corollary 7.3. The unitary character table of the central pique P of
finite order n is given by

(7.5) Uij =
1√
n

√
|Dj|
|∆i|

∑
β∈∆i

∑
b∈Dj

β(b)

for 1 ≤ i, j ≤ s.

Corollary 7.4. The unitary character table of the dual of a finite cen-
tral pique is the inverse of the unitary character table of the primal.
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8. The double of a central pique

Let P be a finite central pique, with inner multiplication group H

and dual P̂ . Let S be a commutative, unital ring. Let SP and SP̂ be

free S-modules with respective bases P and P̂ . Let SH be the group
algebra of H over S. The right action of H on P extends to make

SP a right SH-module. Dually, the left action of H on P̂ extends to

make SP̂ a left SH module. The multiplications on P and P̂ extend

by distributivity to respective multiplications on SP and SP̂ , making
these structures into pique algebras over S. Specifically, the right SH-
module SP with the product given formally by (2.2) is called a primal

pique algebra, while the left SH-module SP̂ with the product given
formally by (6.1) is called a dual pique algebra. Use the tensor product
terminology of [15, §5.1].

Definition 8.1. The S-double DS(P ) of the finite central pique P is
the tensor product of the right SH-module SP with the left SH-module

SP̂ . The (integral) double of P is D(P ) = DZ(P ).

In the S-double, the multiplications on SP and SP̂ will bind more
strongly than the tensor product. Note that DS(P ) is again a free
S-module, with basis given by

(8.1) {b⊗ β | b ∈ P, β ∈ P̂}.

Proposition 8.2. There is an abelian group homomorphism

(8.2) ev : D(P ) → S1

from the double to the abelian group of complex numbers of unit mod-
ulus, defined on elements of the basis (8.1) by b⊗ β 7→ β(b).

Proof. Apply [15, Th. V.1.1]. The map

P × P̂ → S1; (b, β) 7→ β(b)

is linear in its first argument since its second argument is a character.
It is linear in the second argument by the definition of the character
group of an abelian group. Finally, it is middle associative by the

definition of the left action of H on P̂ . �

The map (8.2) is known as evaluation.

9. Words in pique algebras

Let l be a natural number. Consider the set of natural numbers
less than 2l, expressed by their binary expansions of length l. (For
l = 0, the natural number 0 is expressed by the empty expansion.)
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This section discusses the formation of certain repeated products in
pique algebras, known as full words of depth l [16, §8.1]. The basic
definition is inductive. For l = 0, the full word of depth 0 is

f0(a0) = a0.

Then for each natural number l, the full word of depth l+1 is given as

(9.1) fl+1(a0, . . . , a2l+1−1) = fl(a0, . . . , a2l−1) · fl(a2l , . . . , a2l+1−1).

The suffix l on the symbol f already implies the number of arguments,
namely 2l. For a function

g : {0, 1, . . . , 2l − 1} → N
(which will often just be the embedding of the domain), it is convenient
to introduce the abbreviated notation

f j
l (ag(j)) = fl(ag(0), . . . , ag(2l−1)).

Thus by convention, the dummy index j appearing in arguments of
fl is to run in order from j = 0 to j = 2l − 1. In this notation, the
inductive definition (9.1) takes the form

f j
l+1(aj) = f j

l (aj) · f j
l (a2l+j).

Now interpret each integer k or binary word of length l as a monoid
word wk over the alphabet {R,L} by 0 7→ R and 1 7→ L. These words
may also be interpreted in the inner multiplication group H of P and

P̂ .

Proposition 9.1. In the dual pique algebra SP̂ ,

(9.2) f j
l (χj) =

2l−1∑
j=0

wjχj.

Proof. For l = 0, (9.2) is trivial. Suppose (9.2) holds for l. Then by
(9.1) and (6.1),

f j
l+1(χj) = f j

l (χj) · f j
l (χ2l+j)

= Rf j
l (χj) + Lf j

l (χ2l+j)

=
2l−1∑
j=0

Rwjχj +
2l−1∑
j=0

Lwjχ2l+j

=
2l−1∑
j=0

wjχj +
2l+1−1∑
j=2l

wjχj =
2l+1−1∑

j=0

wjχj.

�
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Corollary 9.2. For a permutation λ of {0, 1, . . . , 2l − 1},
2l−1∑
j=0

wjλχj = f j
l (χjλ−1).

For a given natural number l, consider the permutation ρ or ρl of
{0, 1, . . . , 2l − 1} that reverses the length l binary expansions. The fol-
lowing proposition has an inductive proof analogous to that of Propo-
sition 9.1, but the details are more subtle.

Proposition 9.3. In the primal pique algebra SP ,

(9.3) f i
l (xi) =

2l−1∑
i=0

xiwiρ.

Proof. For l = 0, (9.3) is trivial. Suppose (9.3) holds for l. Then by
(9.1) and (2.2),

f i
l+1(xi) = f i

l (xi) · f i
l (x2l+i)

= f i
l (xi)R + f i

l (x2l+i)L

=
2l−1∑
i=0

xiwiρlR +
2l−1∑
i=0

x2l+iwiρlL

=
2l−1∑
i=0

xiwiρl+1 +
2l+1−1∑
i=2l

xiwiρl+1 =
2l+1−1∑

i=0

xiwiρ.

�

Remark 9.4. Proposition 9.3 gives an explicit version of the address-
ing of arguments in repeated products discussed in [16, §8.1]. The
universality of the description (9.3) is guaranteed by [3, Th. III.5.4].

Corollary 9.5. For a permutation λ of {0, 1, . . . , 2l − 1},
2l−1∑
i=0

xiwiλ = f i
l (xiρλ−1).

10. Loop-indexed identities

Let l be a natural number. Let L be a loop (with identity 0) defined
on the set of natural numbers less than 2l, expressed by their binary
expansions of length l. Consider the multiplication table of the loop
L, in which each column label 0 ≤ c < 2l is written as χc, and each
row label 0 ≤ r < 2l is written as xr. An example for l = 2 is given in
Table 1.
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L χ00 χ01 χ10 χ11

x00 00 01 10 11
x01 01 11 00 10
x10 10 00 11 01
x11 11 10 01 00

Table 1. A loop of order 22.

Now let P be a central pique, with S-double DS(P ) and inner mul-
tiplication group H. The variables xi are interpreted in SP and the

variables χj in SP̂ , for 0 ≤ i, j < 2l. If

ij = k

is a multiplication in the loop L, consider the corresponding element

xiwk ⊗ χj = xi ⊗ wkχj

of the S-double DS(P ) of P . The entire loop L then indexes equal
sums

(10.1)
∑

0≤i,j<2l

xiwij ⊗ χj =
∑

0≤i,j<2l

xi ⊗ wijχj

in the S-double. By (IL) and Corollary 9.2, the right hand side of
(10.1) parses as a sum

(10.2)
∑

0≤i<2l

xi ⊗ f j
l (χi\j)

in DS(P ). By (IR) and Corollary 9.5, the left hand side parses as a
sum

(10.3)
∑

0≤j<2l

f i
l (xiρ/j)⊗ χj

in DS(P ). In (10.2) and (10.3), the left and right divisions appearing
in the suffices are taken from the loop L.

Definition 10.1. The identities

(10.4)
∑

0≤j<2l

f i
l (xiρ/j)⊗ χj =

∑
0≤i<2l

xi ⊗ f j
l (χi\j)

are called loop-indexed identities. More specifically, (10.4) is called the
loop-based identity indexed by the loop L.

Summarizing,
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Theorem 10.2. Each loop L of 2-power order indexes a loop-based
identity (10.4) holding in the S-double of each (finite) central pique.

Example 10.3. The loop of Table 1 indexes the identity

(x0x2 · x1x3)⊗ χ0 + (x2x3 · x0x1)⊗ χ1

+ (x1x0 · x3x2)⊗ χ2 + (x3x1 · x2x0)⊗ χ3

= x0 ⊗ (χ0χ1 · χ2χ3) + x1 ⊗ (χ2χ0 · χ3χ1)

+ x2 ⊗ (χ1χ3 · χ0χ2) + x3 ⊗ (χ3χ2 · χ1χ0).

The two-element loop indexes the identity

(x0x1)⊗ χ0 + (x1x0)⊗ χ1 = x0 ⊗ (χ0χ1) + x1 ⊗ (χ1χ0).

This specializes to
(xx)⊗ χ = x⊗ (χχ).

Corollary 10.4. Each loop L of 2-power order indexes the identity∏
0≤j<2l

χj(f
i
l (xiρ/j)) =

∏
0≤i<2l

f j
l (χi\j)(xi).

Proof. Apply the evaluation map (8.2) to (10.4) interpreted in the in-
tegral double of P . �
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