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Abstract. Let F be a field. For each k > 1, let G be a finite group containing 
{xl . . . .  ,xk}! • {Yl . . . . .  Yk} !" Then in the group algebra FG, 

codim v ~ (1 +(x jx j+ l ) ) ( l+(y j y~+l ) )FG= . 
j = l  I[ 

d z  

x Jo(2 ] ~ )  z k+ 1" 

Connections with the theory of commutative Moufang loops are discussed, 
including a conjectured answer to Manin's problem of specifying the 3-rank 
of a finitely generated free commutative Moufang loop. 
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I. Introduction 

This paper has two aims: to present a conjectured solution (Conjecture 8.1) to 
Manin's problem ([7], Vopros 10.3; [8], Problem 10.2) on the 3-rank of the 
free commutative Moufang loop on a given finite number of generators, and, 
as a first stage in the proof of this conjecture, to give an algebraic in- 
terpretation (Theorem 4.1) to the coefficients of the power series expansion of 
the reciprocal of the Bessel function Jo(x) in a neighbourhood of 0. These 
coefficients were studied earlier by Carlitz [2], Forsyth [4], and Riordan [10, 
w 
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The proof of the main theorem involves two matters which may be of 
independent interest. The first, in Sects. 4-6, might be called "combinatorial 
topology in the strong sense": the homology of a complex with an elaborate 
system of subcomplexes, where the combinatorics of this system plays an 
important r61e. Generalised "boundary mappings" of degrees lower than - 1  
arise - the ~k of Sect. 5. The second matter, in Sect. 7, is the theory of 
compositions or ordered partitions of positive integers. 

In order to make the material more accessible the relevant facts about 
commutative Moufang loops are mentioned briefly. Further details, which 
often turn out to be extremely involved, may be found in [1, 11], and [12]. 

2. Basic Facts about Commutative Moufang Loops 

A commutative Moufang loop or CML for short (L,., 1) is a set L with a binary 
operation (multiplication) denoted by . or juxtaposition and a (nullary oper- 
ation selecting an) identity element 1 such that the following axioms are 
satisfied: 

(2.1) In the equation x . y = z  knowledge of any two of x, y, z in L specifies the 
third uniquely, i.e. (L, .) is a quasigroup. 

(2.2) For  x in L, x.  1 = x = l  .x, i.e. (L,., 1) becomes a loop. 

(2.3) For  x, y, z in L, x . ( y . ( x ,  z))=((x, y). x). z, i.e. (L,., 1) becomes a Moufang 
loop. 

(2.4) For  x, y in L, x . y = y . x  (commutativity). 

As a consequence of (2.1) to (2.3), each two-element subset of L generates an 
associative subloop of (L,., 1) ([1], VIII.4). One may thus apply the usual 
group-theoretic notions of inverse and exponent to (commutative) Moufang 
loops. 

Groups are associative but not necessarily commutative. CMLs are com- 
mutative but not necessarily associative ([1], VIII.l). To a certain extent CML 
theory is like group theory with the r61es of commutativity and associativity 
exchanged. Just as the deviation of a group from commutativity is measured 
by the commutator  [ x , y ] = ( y x ) - l x y  of two elements x, y, the deviation of a 
CML from associativity is measured by the associator (x, y, z) =(x(yz))-  l((x y) z) 
of three elements x, y, z. A group commutator is skew-symmetric in its 
arguments: [y, x] = Ix, y ] -  1. Similarly, a CML associator is skew-symmetric in 
its arguments: (y, z, x)=(x,  y, z)=(y, x, z) -1 ([1], VIII(2.3)). A group G has a 
lower central series Go=G .. . . .  GI=[G i 1,G] . . . . .  where [G i_l ,G] is the sub- 
group of G generated by {[x,y]lxeGi_ 1, yeG}. Similarly, a CML L has a 
lower central series L o = L  ... . .  Li =(L~_ ~, L, L) . . . . .  where (L i_ 1, L, L) is the sub- 
loop of L generated by {(x, y, z)lxsL~_ 1, Y, zeL}.  As in the group case, a CML 
L is said to be nilpotent of class c if Lc_ l>Lc={1} .  The terms of the lower 
central series of a loop are normal subloops, i.e. equivalence classes of con- 
gruences on the loop, and the corresponding quotients may be realised by 
cosets under multiplication, just as for groups. In group theory the notation 
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[a,b, c . . . . .  u, v] is useful for the left-normalised repeated commutator 
[ [ [ . . . [ [a ,  b], c] . . . .  ], u], v]. In CMLs (a, b, c! d, e! ... ! u, v! w, x) is equally useful 
as an abbreviation of (((...((a, b, c), d, e),...), u, v), w, x). 

Despite these and other analogies, however, the theory of CMLs displays 
far more special features than the theory of groups. The first sign of this is the 
stronger form of skew-symmetry enjoyed by associators: (x 1, y, z)=(x, y, z) 1 
([1], Lemma VII.5.5). Only a narrow class of groups satisfies the analogous 
Ix -  1, y] = [x, y ] -  1 ([1], Lemma VII.5.3; [14], Proposition 2). The prime 3 also 
plays a distinguished r61e in CML theory, far more marked than the special 
r61e of the prime 2 in group theory. For  example, the derived loop L 1 of a 
CML L has exponent 3 ([1], Lemma VII.5.7). Above all, there is the deep 
Bruck-Slaby Theorem ([1], Theorem VIII.10.1) stating that a CML generated 
by n elements is nilpotent of class less than n. 

Let L now denote the fi'ee CML on an n-element set X of generators, n > 2. 
From [6] or [12] it follows that L has the lower central series L 
= L o > L I > L z > . . . > L , _ I = { 1 } .  The successive factors L1/L 2 . . . . .  L n _ z / L n _  1 

are elementary abelian groups of exponent 3, having the permutation group X! 
of X acting as a group of automorphisms. One may thus consider 
L 1 / L z O . . . O L , _ z / L , _  1 as a right module for the group algebra GF(3)X!  of X! 
over the Galois field GF(3) of three elements. Manin's problem is to specify the 
dimension 6(n) of this module. 

3. Some Critical Identities for Repeated Associators 

In a CML one has the identities 

(3.1) ( a , b , e ! d , e ) ( b , c , d ! e , a ) ( c , d , e ! a , b ) ( d , e , a ! b , c ) ( e , a , b ! c , d ) = l  

([-11], w and 

(3.2) (e, a, b! c, d)=(e, c, d! a, b)(a, c, d! b, e)(b, c, d! e, a) 

([11], 2.3) ([1], Lemma VIII.6.4). Note that all the factors here lie in an abelian 
group A, so the products are unambiguous. Since derived loops have exponent 
3, (3.1) may be rewritten as 

(a, b, c! d, e)(c, d, e! a, b)(e, a, b! c, d)- l(b, c, d! e, a) 
(3.3) 

(e ,a ,b!c ,d) -  l ( d , e , a ! b , c ) = l .  

By (3.2) and the 
=(c ,d ,e !a ,b ) (e ,  a, b! 
through fourth factors 

(a, b, c! d, e)(c, d, a! e, b)(e, a, b! c, d)- t(d, e, a! b, c ) = l ,  

or, applying the strong skew-symmetry again, 

(a, b, c! d, e)(a, d, c! b, e)(a, b, e! d, c)(a, d, e! b, c)= 1. 

strong skew-symmetry of associators, (c,d,a! e, b) 
c, d) l(b, c, d!e,a).  Using this to rewrite the second 
of (3.3) gives 
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On setting z = a ,  x l = b ,  Y l = C ,  x 2 = d ,  y2=e,  and passing to right 
G F ( 3 ) { x l ,  Yl ,  x2,  Y2} !-module notation, this identity takes the suggestive form 

(3.4) (z, Xl, yl ! x2, y2)(1 + ( X l X 2 ) + ( y l y z ) + ( x l x 2 ) ( y l Y 2 ) ) = 0 .  

More generally, consider the repeated associator (Z, X l , y l [ . . .  [Xk, Yk) and 
its images under permutations of {x 1, Yl . . . .  , Xk, Yk}" By the Bruck-Slaby The- 
orem these images all lie in an abelian group. Let (~, ~/i respectively de- 
note the transpositions (xix~+l), (Y~Y~+I) for l < i < k .  Using right 
GF(3) {x 1, Yl .. . .  , Xk, Yk} !-module and conventional CML notations, 

(z, Xl ,  y l ! ... ! Xk, yk)(1 + ~i q- rll q- ~iqi) 

=(Z, Xl ,  Yl ! ... ! xi ,  Yi! Xi+ l, Yi+ l ! . . . )(z ,  x p  Y l ! . . .!  xi+ l, Yi ! xi ,  Yi+ x ! .. .), 

(Z, X l , Y l !  . . . ! x i ,  Y i+l !Xi+a,  Yi! . . . ) (z ,  x l , Y a !  . . . ! X i + l , Y i + l ! x i , Y i ! . . . )  

: ( ( (Z,  X1, yx !... !Xi_ 1' Yi -  1)' Xi' Yi ! Xi+ 1, Yi+ 1) 

�9 (1 -~'-~i-~-l~i-[-~ilTi)[ Xi+2, Yi+2 ! ...) 

=(1, X i+z ,Y i+2! . . . )=O.  

The second equality here follows from the general multiplication formula ([11], 
Proposition 10.3(i)) and ([11], Lemma 6.1). The third follows from (3.4) with z 
replaced by (Z, Xa ,Y l I  ... ! X i _ l , y  i 1) and x 1, Yl, x2, Y2 by x i, Yi, xi+ 1, Yi+l 
respectively. Summarising, for 1 < i < k, 

(3.5) (z, x l, Y I ! . . .  !Xk, Yk)( 1 + ~)(1 + q,)= 0. 

A key step in the solution of Manin's problem on the 3-rank is the 
determination of the dimension of the G F ( 3 ) { x  1, Yl . . . .  , Xk, Yk} !-module generat- 
ed by (Z, X x , Y l ! . . . ! X k ,  Yk), i.e. the codimension of the annihilator of 
(z, x l , y l ! . . . ! x k ,  Yk). The identity (3.5) shows that this annihilator contains all 
the ( l+~i)( l+qg)  for l < i < k .  One is thus led to study the right ideal of 
GF(3) {x l ,  Yl  . . . . .  Xk, Yk} ! generated by {(1 + ~i)(1 + ~//)11 < i<  k}. It is this right 
ideal which yields the algebraic interpretation of the coefficients of the recipro- 
cal of the Bessel function Jo(x). 

4. An Algebraic Interpretation of the Coefficients of 1]J o 

The next four sections, which are self-contained, are concerned with the proof 
of the following theorem: 

Theorem 4.1. Le t  G be a f i n i t e  group containing the product  {x  1 . . . . .  Xk}! 
x{y  I . . . . .  yk}! o f  the symmetr i c  groups on the sets {x  I . . . .  ,Xk}, {Yl . . . .  ,y~} re- 

spectively,  k>__2. L e t  F be a f ie ld ,  and R = F G  the group algebra o f  G over F. 
For  1 < i < k ,  let ~ i=(x i x i+  l), rli=(yiYi+ 1). Then 

u 1 IG[ dz  
(4.2) codim v ~ (1 + ~fl(1 + rli ) R = izl ~ 1 ' 

j=l " ~ = J o ( 2 ] / z )  z k+l 
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Let S denote the group algebra of the subgroup H = { x  1 . . . .  , X k } !  

x{yl  . . . .  ,yk}! of G, considered as a subring of R. The group H is freely 
generated by the set {~1 . . . . .  ~k 1, ~/1 ... .  , qk~ 1} subject to the relations specified 
in the graph 2Ak~ 1 

O 0 . . . .  0 0 

(4.3) 

0 0 . . . .  0 0 

r/1 q2 qk-2 r/k-1 

that two generators commute if the vertices they label are not joined by an 
edge, that their product has order 3 if the corresponding vertices are joined, 
and that each generator has order 2. (Cf. [3], particularly w for this and 
some subsequent notions.) One may form the Cayley diagram of H with 
respect to this presentation, and embed it in Euclidean space of dimension at 
least 2 k - 2  as the vertices and edges of the generalised prism I l k_  1 X H R _  1. 

The prism is subdivided into cells consisting of the convex hulls of the right 
cosets of the subgroups of H generated by the various subsets of {(i . . . . .  ~k-1, 
~/I, "", t/k-1}" These cells may be formed into an abstract cell complex K k (as in 
[5], w taking the (abstract) dimension of a cell to be its geometric 
dimension as a convex subset of the Euclidean space, and deriving incidence 
numbers from an orientation of FI k_ 1 x if/k- 1" The complex K k is contractible, 
since the convex figure El k 1 x Elk 1 is. Positive integers will be thought of as 
colours, and edges of the Cayley diagram corresponding to ~i or ~/i will be said 
to be coloured with the integer i. Note that the dual of the boundary of K k is 
Tits' C o x e t e r  complex  for 2 A  k 1. 

For  each pair of subsets ~, fi of {1 ... .  , k - 1 } ,  K k has a subcomplex Kk(~ • fl) 
whose cells are precisely the convex hulls of the right cosets of the subgroups 
of H generated by the various subsets of {~i]ie~} u {~hliefl}. Note that the sets 
of O-cells of K k and of each Kk(~ • fl) are identical - namely the set H of 
vertices of F/k_ 1 • 1. The subcomplex Kk({1 . . . . .  k - 2 }  2) for k > 2  may be 
regarded as a disjoint union of k 2 copies of K k-1. For induction it is con- 
venient to denote Kk({1 . . . . .  k - 2 }  2) by •k 1 and to extend the --notation to 
other features of K k i correspondingly reproduced k 2 times within K k. This is 
known as the - -convent ion.  

Since the complex K k is finite, the sets Kkp of F-linear combinations of p- 
cells of K k and CP(Kk; F) of functions from the set of p-cells of K k to F may be 
considered as F-vector spaces. There are linear boundary mappings 0: 
K k - ~ K  k (cf. [5], 2.12.4); the boundary of the cell consisting of the convex p p i 
hull of a right coset of (~i ,  t l2] ie~ , je f l )  (for subsets ~, fl of {1 . . . . .  k - l } )  is a 
linear combination of right cosets of (~i, ~/j[ie~- 1io}, j e f f )  and of ( ~ ,  ~/jlie~, 
j e f f - { J 0 } )  as i o and J0 range over ~, fl respectively. 

The space C ~  may be identified with the dual S' of the F-vector 
space S. Under the isomorphism ' from S to S' sending H to a dual basis, (1 
+ ~ ) ( l + q ~ ) S  corresponds to the set of functions taking equal values at every 
vertex of each of the cells of Kk2({i}2). Identifying Kko=Kko({i}z ) with the dual 
of S', the annihilator of this set of functions is just the boundary K]({i}2)O of 
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the set of linear combinations of i-coloured edges. Thus the annihilator of the 
k - 1  

subspace of S' corresponding to the subspace ~ ( l+~i ) ( l+r / i )S  of S under ': 
k - 1  i = l  

S ~ S '  is A k =  ~ K]?,. The proof  of Theorem 4.1 reduces to showing that the 
~=~ 

dz 
dimension of A k is (k!)z2ni I~l=X~ J o ( 2 ] / ~ ) z k + l .  To this end a complex over A k is 

constructed in the next section, and shown to be a resolution of A k in w 6. This 
resolution is then used to count dimensions in w 7. 

5. A Complex Over A k 

Call a cell of K k ful l  if it contains an edge of each colour, i.e. if it is the convex 
hull of a right coset of a subgroup of H that contains either ~i or r/i for each i 
= 1 . . . . .  k - 1 .  A bounding cell of a non-full cell cannot be full, so the non-full 
cells form a subcomplex W k of K k, namely 

W k = Kk({2, 3 . . . . .  k -  1} 2) w K k ( { 1 ,  3 . . . . .  k - lI2) w ... 

wKk({1,2 . . . . .  k -2}2) .  

Let X k be the direct complement of W k in K k spanned by the full cells, with 
projections ~w: K k ~ x k  and [3w: K k - ~ W  k. Let J = 0 ~  w denote the boundary 
map in the complex X k. 

A linear map ~k: K~_  1-~ A k will be defined so that 

(5.1) k ? k ~ ~ k ~ k ek 0 -~'X2k_2---->XEk_3 . . . . .  X k ~ X k _ I ~ A k - - - } O  

is a complex of F-vector spaces. For each j =  1, 2 . . . . .  k - 1 ,  define a j-dimen- 
sional subcell of a full cell to be initial if it contains edges of each of the 
colours 1, 2 . . . . .  j (and thus is itself a full cell in one of the subcomplexes /~k ~, 
Rk 2, etc.). For  example, the initial 1-cells are just the 1-coloured edges. The 
desired effect of e k on a full cell c with its orientation may then be described as 
follows. Take the initial cells in the boundary of c with the orientation induced 
in the boundary, then the initial cells in their boundary with the induced 
orientation, and so on down to the 1-coloured edges with the induced orien- 

k tation. Now define a linear mapping ek: X k _  1 K k by taking ce  k, the desired 
ce k, to be the boundary of these oriented 1-coloured edges. For k = 2  one may 
realise I1 k_ 1 x I l k -  ~ as the unit square [0, 1] x [0, 1] in IR 2, oriented as shown 
in the figure: 
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Here the cells have been assigned their "group-theoretical" names with ~=~1, 
r/=t/1, e.g. [ 0 , 1 I x { I }  is called (~)r/ ,  the point (1,0) is called ~, and [0,1] 
x [0 ,1 ]  is called (~,t/).  The space X 2 is spanned by {(~,t/)}, X 2 by 
{(~), (q) ,  (~)  t/, ( t /)  ~}, and K 2 by {1, ~, t/, ~t/}. Note that (~, y/) ~ = ( ~ )  + ( t / )  
+ ( ~ )  r/+ (t/). The space A 2 is just the (double dual of the) augmentation ideal 
of V(~, r/). The space X 2 is all of K~ (i.e. W12 =0), and e2: X~--, A 2 is defined 
to be the boundary map 3 of K 2, e.g. (r/) ~e 2 = ( q )  ~(?=~r/-~.  Since ~e 2 =~2 is 
the zero mapping on X 2, (5.1) becomes a complex in this case. 

Now consider the case k > 2. Since K k 1= X k-  ~| W k- 1, one also has l (  k- 
= ) f k - l |  W k - 1 ,  in accordance with the --convention. Further, there is a direct 
sum decomposition K k = I (  g l ff~(Kk/I(k 1), where K k / I (  k ~ is realised on the 
subspaces of each K k spanned by the /-dimensional cells of K k not in K~-k-1. 
Let the corresponding projections be c~x: K ~ - - ~ K k / I (  k-1 and fix: Kk- -+l (k - l "  

k By induction on k a map ek: K k_ ~--, A k will be defined, with the properties: 

(5.2) (i) e k restricts to the zero mapping on Wk k_ 1; 

(ii) C'~ek=O: k K~--~ Ak; 

(iii) for a full (k-1)-dimensional  cell c, Cek=ce  k. 

This has already been done for k=2.  Suppose it done for k - l ;  then 
according to the --convention there is a map ?;k- 1: /(~5~ ~ Ak- 1 restricting to 

- -  - 1 .Z~k The map e k is then zero on Wkk-11 and satisfying ?flgCk 1 =0:  K~ZI-* -1" 
defined to be the composite 

1- 2 rink 2 - ~Ak- 1 " 

To verify property (i) of e k, consider cells in Wk k 1- These cells fall into two 
classes: those in /(k21, and those not. Now /(ks10 lies in /(ks~, on which /~g: 
K~ 2---'/(~- ~ acts as the identity. By property (ii) of e k 1, and correspondingly 
o f g k _ l ,  it follows that ek-W-~flg~k._l=O: / ~ - I - - ~ . A I  k 1" Now a cell of Wkk 1 n o t  

in / (kzl  is in the convex hull of a right coset of (~i,~ljli~ct, j ~ f l )  for some 
a, fl__{1 . . . . .  k - l }  with k - l ~ c ~ u f l ,  [ctl+lflL=k-1, and Ic~c~fll>0. Bounding 
cells of such cells either lie in WkQ-11 or off /(k-1. Cells of the first kind are 
preserved by fig, but are then mapped to zero by 2 k_l, while cells of the 
second kind are immediately killed off by fig. The upshot is that a cell of Wk k_ l 
not lying in /(kEl is also mapped to zero by (?flK2k_ 1. Thus property (i) for e k 
is verified. Property (ii) is immediate: C~ek=(?~flg-~ k 1=0. Property (iii) follows 
from the definition of e k and the corresponding property o f g  k 1" 

It remains to show that K~ l gk -- or, what is now seen to be equivalent, 
X~_ l ek - is a subspace of A k. A priori X k_ l ek is a subspace of Ak-1, i.e. of 
k - 2  
(~ K]({i} 2) (?. Thus it suffices to check that xk__l ~'k ~ K]({ k -  1} 2) ~' Consider a 

i - - 1  

(k-1)-coloured edge of a full (k-1)-dimensional cell b. Each of the endpoints 
x o, x 1 of this edge lies on precisely one edge of each colour 1, 2 . . . . .  k - 2 ,  these 
k - 2  edges determining respective initial cells c 0, c 1. The cells c o and c 1 are 
oriented within the boundary b0 of b. It must be shown that the points x o and 
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x~ appea r  with opposi te  signs on applying ~k to b, and thus on applying 2k- 1 
to C o and  c 1. Let  c 2 denote  the ( k - 2 ) - d i m e n s i o n a l  cell of b containing x o, x 1 
and having edges coloured l, 2 . . . .  , k - 3 ,  k - 1 .  Let d o, d t be the initial cells of 
d imension k - 3  at the points  x o, x~ respectively determined by the edges there 
of  colours 1,2 . . . . .  k - 3 .  If d o and d~ are given their or ientat ions within the 
boundar ies  of  c o and c 1, it must  be shown that  the points  x o and x I appear  
with opposi te  signs on applying ~k-2 to  d o and d~. But d o and dl also appear  
within the bounda ry  of c2, their or ienta t ions  there being opposi te  to their 
or ientat ions within the respective boundar ies  of  c o and c~ in order that  b00 be 
zero. It thus suffices to note that  x 0 and x~ appear  with opposi te  signs on 
applying ek 2 to  d O and d~ with their or ientat ions in the bounda ry  of c 2, this 
following by the induction hypothesis,  the r61es of  the colours k - 2  and k - 1  
being interchanged. 

6. The Complex is a Resolution 

This section comprises  the p roo f  that  the complex  (5.1) over  A k is actually a 
resolut ion of A k. For  exactness of (5.1) at X k i = 0 ,  .., k - 1 ,  one needs the i+k lv 
following 

Lemma 6.1. Let (a 1 . . . .  ,as) be a sequence of subsets of {1 . . . . .  k}. Then for r>s,  
Hr(Kk(a 2) td... ~ Kk(a2)) = O. 

Proof For  s =  1, Kk(a 2) is h o m o t o p i c  to a set of  isolated points, so Hr(Kk(a2)) 
= 0  for r>=l. For  s > l ,  suppose r>=s. By an induct ion hypothesis  on s, 
Hr(Kk(a2)w...  ~Kk(a  2 1))=0 and 

k 2 Hr_ l((Kk(a21)L)... ~ K  (as_ 1))csKk(as)) 
= H~ , ((Kk(a 2) r Kk(a2)) ~ . . .  ~ (Kk(a2 1) r K k(a2))) 

= H  r_ l(Kk((al c~ a~)2)w ... uKk((as_l  ~ a~)2)) = O. 

Exactness of the piece of  Mayer-Vietor is  sequence ([5], p. 93) 

Hr(Kk(a 2) w . . .  ~ Kk(a2~_ 1))GHr(Kk(a2)) 

Hr(Kk(a 2 ) ~ . . .  u Kk(a 2_ 1) u Kk(a2)) 

Hr_ l((Kk(a2)u ... wKk(a 2 1))0 Kk(a~))2 

then implies that  Hr(Kk(a~)~. . .  ~Kk(a2))=0. 

Remark .  The requi rement  that  r>=s in L e m m a  6.1 is essential, e.g. Ho(K2({1}2)) 
4:0, HI(K3({1}Z)uK3({2}z))4:0,  etc. 

k for i > 0  is just  the vanishing of Hi+ k l(Xk). Exactness of  (5.1) at  Xi+ k 1 
This follows f rom the exact homology  sequence [5, 2.9.1] 

Hi+k_ x(Kk) -+ Hi+k_ l(xk) -* Hi+k_ 2(Wk). 

Here,  Hi+k_l(Kk)=o since K k is contract ible,  while Hi+k_z(Wk)=O is an 
appl ica t ion of L e m m a  6.1 with r = i + k - 2 ,  s = k - 1 ,  a )={1  . . . . .  k - l } - { j }  f o r j  
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= 1 . . . . .  k - 1 .  Exactness of  (5.1) at X~_ 1 is more  complicated,  following from a 
p roof  by induct ion over  k that  k e r S k = X k # a w  + Wk k 1" This is certainly true for 
k = 2 .  For  k > 2 ,  recall first that  by (5.2)(i), (ii), ke rek>xk#~w+Wkk  1. NOW 
suppose x in X~ l satisfies X ~ : k = 0  , i.e. by induction x~flKeX~y_{?,flr,~ a, 

- -  - - k -  1 - -  +Wkk5),  say via YeXk_  , and ffeWk k 2 ~ such that  X#flK=9~fiK~W+~. The aim 
is to find a y in X~ with y { = x .  Consider  9#flg=9(?fig~w+9?fiKflw.  Now ~x 
+f i t~= l  and a w + f l w = l ,  so 

(x - y) a = (x - 9) a ~ + (x - y) a flK 

say. Since z ( ? = ( x - 9 ) ~ 0 = 0 ,  Z E Z k _ 2 ( K k ) .  However ,  z also lies in (Kk/I(  k- 1)k 2 
;. 

k 2 Let l r  (a k 2), where a i={1  . . . . .  k - 1 } - { i } .  /(  is the sub- 
complex of W consisting of those cells for which at least one of 1 . . . . .  k -  2 does 
not appea r  as an edge colour. As usual, there is a direct sum decompos i t ion  
w k = I ~ ( w k / I ~ )  with project ions ag: W k---+ Wk/I~ and fig: Wk---~I~. Now 
(Kk/I(  k 1)k_2<Kk_ 2, since a ( k -2 ) -d imens iona l  cell in Kk/I (  k 1 having ( k - l )  
as an edge colour, but at most  k - 2  edge colours, must  lack one of 1 . . . . .  k - 2 .  
Similarly Wkk_-21 < / ( g - 2 ,  since a cell of  W ~-1 does not  have a full set {1 . . . . .  k 
- 2 }  of edge colours. Thus z lies in Zk_2(/().  By L e m m a  6.1, Hk_ 2(/() ---- 0, so z 
lies in B k 2(/~), i.e. there is a t in / r  such that  t O = z = ( x - 9 ) ? ~ .  Then  ( x - 9  
-t) 0 =0.  Since K k is contractible,  there is a y' in Kk k such that  y '~  = x - y - t .  
Take  y to be Y'aw in X k, so that  Y = Y ' - Y ' f l w .  Then y[=yc'~aw=(y'-y ' f lw)C?~ w 
= y ' c ' ) a w = X ~ w - Y ; ~ w - t a w = X  as required. 

The  final task of this section is to show that  Sk: Xkk 1--~ A k surjects, or, in 
view of (5.2)(i), to show that  ek: K k l ~ A k  surjects. Let  a~A k. For  i = 1  . . . . .  k 
- 1 ,  there is a b~ in K]({i} 2) such that  bd?=a. Let B = b ~ F + . . . + b  k 1 F < K ] .  
The exterior  a lgebra AB is a complex under  the homogeneous  linear mapp ing  
d of degree - 1 defined by 

( b q A . . . A b i r ) d =  ~ ( - - 1 ) ~ - J b s A . . . A ~ i  A. . .Abi~,  b i d = l  
j--1 

(cf. the a rgument  of [-5, 2.2.5]). By induct ion over  r, a linear zero-degree chain 
mapp i ng  h: @ A I B ~ @ K  k will be defined so that, for r > l ,  

i<r i<r 
(bi,/x ... Abir) he.Kk({il . . . . .  it} 2) and (b 1A .. ./xbr)h-~r+l=a. For  r = 0 ,  set h: A~ 
=F- -~  Kk; 1 w-~a. For  r = l ,  set b ih=b  i. Then  bihcP=b~c~=a=bidh, in par t icular  
b l h 2 2 = b l h O = a .  Suppose h has been defined appropr ia te ly  for degrees up to r 
- 1  >0 .  Then for each r-tuple i I < ... <i t ,  (bi,/x ... Abir)dhc?=(bi, A ... Abi , )ddh 
=0,  i.e. 

(b h A. . .  A b,,.)dh6Z~_ l(Kk({i, . . . . .  ir}2)) =Br  L(Kk({i, . . . . .  i~}z)) 

using L e m m a  6.1, i.e. there is a ci,...~. in Kk({il . . . . .  it} 2) such that  ci,...i/? 
= (bit A. . .  A b i t  ) dh. Defining (b i i  A . . .  A blr ) h = ci, ...ir then ensures 
(bi, A ... Abir)hc~=(bl, A ... Abi,.)dh. Finally, 
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(b 1/ ' , . . .  A b~) h-~+ 1 :C1...r(~l~P~r 

=(b I A A b~) d h f l e ~  ~ ~ ( ~-J - = ... = - 1) cl...L.rflx,.e r 
j = l  

= Cl...r 1)2r = (b l / x  . . . /x  br_ O h 2 r = a .  

Thus ek : Cl...r l) ~--*a, showing e k surjects as required. 

7. Counting Dimensions - Compositions 

This section completes  the p roo f  of T h e o r e m  4.1. Let 

k--1 

f l k = d i m r A k = C O d i m F  ~ (1 + ~i)(1 +rl i )S ,  k > 2 ,  
i=1  

and fll =fl0 =1-  The a im is to demons t ra te  the 

Proposition 7.1. ~ flkxk/k! k! = 1/J0(Zlfx ). 
k = 0  

Then for k > 1, d im A k = fig -- (k !)2 ~q dz  

21ri izl~ JO(2]/Z)Zk+ 1' 

as required from w The current  section involves the combina tor ics  of 
M a c M a h o n ' s  not ion of  a composi t ion [9, Chap.  6], an ordered par t i t ion il + ... 
+i , ,  = k  of a positive integer k into positive integers i I . . . . .  i,,. For  semigroups  
M "wri t ten  addi t ively"  with opera t ion  + ,  let M + denote  the free semigroup 
on the underlying set of M. Let N be the semigroup with unique element  1. 
Then N + is the semigroup of  posit ive integers under  + : write 1 + 1 + . . .  + 1 
with r summands  as r. The semigroup N + + is the semigroup of composi t ions  
of  integers. The  mappings  2: N++-- -~N+;  i l + . . . + i m ~ - ~ m  and a:  N + + - - ~ N + ;  
i ~ + . . . + i m ~ - * k  (assigning k to each compos i t ion  i ~ + . . . + i m = k  of k) are semi- 
group  h o m o m o r p h i s m s ;  in the monad ic  cohomology  nota t ion  of [13, p. 119] 
they are the morph i sms  e ~ and e~ respectively. There  are also mappings  6: 
N + - * N + + ;  m~--.1 + . . . + 1  (m summands)  and 7: N+---~ N + + ;  k~---~k; the map-  
ping 6 is the morph i sm  6 o of  [13, p. 119] and 7 is the n o n - h o m o m o r p h i c  
m a p p i n g  h I of  [13, p. 120], the embedding  of N + in N + + as a free generat ing 
set of  N + +. 

Let  Nk ++ denote the subset  a -~(k)  of  N + + for each positive integer k. An 
element  i =  i 1 + . . .  + i,, of Nk + + is specified uniquely by the set of  part ial  sums 
{a(i0, a(il +i2) . . . . .  a ( i l + . . .  +ira 0}, and conversely each subset  of {1,2 . . . . .  k 
- 1 }  is the set of part ial  sums of an element of  Nk ++ (cf. [0, III .1.G]).  In 
par t icular  Nk + + is finite, having 2 k- 1 elements  [9, p. 124]. The set of subsets of 
{1,2 . . . . .  k - l }  forms a Boolean  a lgebra  Bk_ 1 under  intersection, union, and 
complementa t ion .  Define a bijection qS: Nk+~--~Bk i by setting ~b(i) for i in 
Nk + + to be the complemen t  of  the set of part ial  sums of i. The elements  of  ~b(i) 
are referred to as the colours of the compos i t ion  i. One may  obta in  an intuitive 
picture of q~ as follows. Consider  the elements x l  . . . . .  x k taken in this order. 
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For a given composition i 1 + . . .  +ira=k,  link consecutive elements amongst the 
first i 1, the next i 2, the next i 3, and so on. Colour the link between x~ and xs+~ 
with the colour i. Then q$(il + . . .  + ira) is the set of colours used in the linking 
determined by i~+.. .+i, , .  For example, 4 b ( 2 + 3 + 1 + 2 ) = { 1 , 3 , 4 , 7 }  may be 
displayed as: 

X I ~ X  2 X 3 - - ~ - X 4 ~ X  5 X 6 X 7 ~ X  8 �9 

The bijection qb may be used to induce a Boolean algebra structure on Nk + + 
from B k 1. In particular c$(k) is the least element of Nk + + and 7(k) the greatest. 
Note, too, that 14b(i)L =or( i ) -  20) for t e N  + +. 

For a function f :  N+-+  IR, one may form the formal power series F(x) 

= ~ f ( k ) x  k. Now IR is a semigroup under multiplication, so there is a unique 
k = l  

semigroup homomorphism f + :  N + +--+ (IR,.); i--+ f(iOf(i2)...f(ia(1) ) such that 
7 o / +  = f  

Lemma 7.2. F(x)/ (1-F(x))= ~ x k Z f+(i). 
k = 1 a ( i )  -- k 

Proof 

z i+(,):  i+(,t. 
1 = 1  I = l k = l  let, )c)(i) = (k, 1) k = l  a(1)  k 

Note. Lemma 7.2 may be interpreted purely formally, or one may think of the 
expansion of F(x) as being valid for x in a domain D over which F is analytic. 
The validity of the expansion of F(x)/(1-F(x))  then depends on F(D) lying 
within the open unit disc. 

Taking f :  N + ~  IR to be the constant function with value 1, i.e. F(x)=x/(1 
- x ) ,  Lemma 7.2 says that the coefficient of x k in the expansion of F(x)/(1 
- F ( x ) ) = x / ( l - 2 x ) ,  namely 2 k 1 is just ~ l=[Nk++l, as concluded earlier 

a ( i ) - -  k 

from the existence of the bijection 4) of Nk + + with the Boolean algebra B k 1. 
For f :  N+--+ IR; kv--+ k!, the integer f+(i), namely il!...ixo)!, will be denoted 

by i!. Note that i! =l(~[je4b(i))l ,  a relation that will be needed later. 

Corollary 7.3. ( -  1)k/k! = ~ ( -- 1);~(i)/i!. 
a ( i ) - -  k 

Proof Take F(x)= 1 - e  x in Lemma 7.2. 

From now on, take f :  N+-+IR;  k~-~-flk/k!k!,  with the corresponding F 
and f + .  

Proposition 7.4. ~ f + ( i ) = ( -  1)k/k! k!. 
a ( i )  = k 

Proof By Corollary 7.3, 
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(-- 1)k/k! k! =(-  1)k( y' (-l)~(i'/i!)( ~ (-1)~(J'/j!) 
o-(i)= k o r ( j )=  k 

=( -1 )  k ~ (- l)~(1)+ ~(i)/i! j ! 
a ( i ) - -  k, 6 ( j ) - -  k 

=( -1 )  k ~ ~ (-1)z(i)+~(J)/i!j! 
a ( q ) - -  k i w j  = q 

=( -1 )  k ~ [I Z (-1)~(i)+~~ ! 
a ( q ) = k  1 < h  =<2(q) i u j  -- y(qh) 

by distributivity 

= ~ H (qh !-2 ~ (--1)q"+~(i)+~O)qh!2/i!J!)" 
o'(q) = k 1 =<h __< A(q) i u j  = y(qh) 

Proposition 7.4 follows if 

ilk= ~" (--1)k+:qi)+~(D+'k!2/i!j!. 
i ~ j  - y(k) 

Now for i wj = y(k), 

I~b(i) c~ ~b(j)l = I~b(i)[ + I~h(J)l- kb(i wj)l 

=k-2(i)+k-2Cl)-(k- 1) = k -  2(i)-2(j) + 1. 

Then since (5.1) is a resolution, 

k 1 

f l k = d i m F ( A k )  = E ( i �9 k - -  1 )  d l m f X i + k _  1 
i = 0  

k 1 

= ~ ( - 1 )  ~ ~ dimFK~+~ l(~b(i)• 
i =  0 i u j  = 7(k),  [0 ( i )  f~ dp(j)} = i 

k - 1  

= ~ (--1) ~ ~ k!2/i!j! 
i = 0 i ~ j  = y(k), IO(i) c~ 4~(j)l = i 

by the remark preceding Corollary 7.3 

"=  E ( - - 1 )  k - z ( i )  z(i)+lk!2/i!j!, as required. 
i ~ j  = ~(k) 

The proof of Proposition 7.1 now follows. By Lemma 7.2 and Proposition 

7.4, F(x)/(1 -F(x))= ~ xk(- 1)k/k! k!. By definition, Jo(z)= ~ ( -  1)k(z/2)2k/k! k!, 
k = l  k = O  

so that F(x)/(1 -F(X))=Jo(2]/x ) - 1. Then 1 -(1/Jo(2 ]~x))=F(x)= 

-- ~ flkxk/k!k! and f lo=l  yield ~ f l k x k / k ! k ! = l / J o ( 2 ~ ) ,  i.e. Proposition 7.1. 
k = l  k = O  

8. The Conjectured Solution to Manin's Problem 

As at the end of w let 3 ~<") denote the cardinality of the derived loop L~ of 

the free CML L on n generators. Let D(z)= ~ 6(n)z"/n !. 
n = 3  
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Conjecture 8.1 

O(z)=,=o ~ ze2~ Jo(2Z(tti-t)) '/2) zZt(1-t)-I dt 

( 8 . 2 )  -t-27z--/0<1,1~_o< 1 l Zt2 exp z . ~ - ~ s i n h  dt. 

The essence of this conjecture is that for given disjoint p-element subsets X 
and (2k+ 1)-element subsets Y of the n generators, where p>0, k>0,  and n > 3  
are integers, the subspace V(X, Y) of the GF(3)-vector space 
L1/L2@...| 2/L, 1 spanned by all the associators having X as the set of 
symmetric arguments and Y as the set of skew arguments (see [11, w for 
these terms) has dimension 

(8.3) O:k + (P+k--1), 
P 

where 71---0 and 7k=flk for k > l .  The contribution 7k for k > l  is believed to 
k--1 

come on inducing up from a module R/~ ( I+r  as in Theorem 4.1, 
j - 1  

this module structure occuring in V(X, Y) on the span of each set of as- 
sociators with fixed symmetric arguments in fixed positions and a fixed left- 
most skew argument. Formula (8.3) for the dimension of V(X, Y) has been 
verified for k up to 3 and small p by extremely long calculations (in the case of 
k=3) using the method of [12]. 

Assuming the validity of the Triple Argument Hypothesis [11, w 1], c~(n) is 
then obtained as the sum of the dimensions of the various V(X, Y) as (X, Y) 
ranges over all disjoint pairs of subsets of the n generators with Y having odd 
cardinality at least 3. Thus the conjecture is that 

n 1 
[ ~ ]  n -  2 k -  l t l!  

(8.4) 6(n,= ~ ~ p,(2k+l) ,(n-p-2k-l ,[[  c~k + ( p + k - 1 ) ] '  
k=l p=0 \ P 

The first few values are 6(3)=1, 6(4)=8, 6(5)=44, (5(6)=214, ,5(7)=1000, 6(8) 
=4592. 

Rewriting (8.4) in closed generating function form then leads to Conjecture 
8.1. To see this, it is convenient to divide the calculations into two parts: the 
Jermion part coming from ~k and the skew arguments, and the boson part 

from (P + k - l ]  and the coming symmetric arguments. 
\ p ] 

The fermion part will be dealt with first. Noting that 

n 2k-1  
n!/p!(Zk+l)!(n-p-Zk-1)!=( n )2" 2 k - 1  

2 k + l  p=0 

this takes the form 
Z n [(n ~ ) / 2 ]  t/ 
_ _  1 0 ( k .  n = 3 H ,  k= l  (2k+l) 2n-2k- 
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Now by Theorem 4.1 

Jo(v)  : - 1 - v 2 / 4 =  ~ ~k(v/2)2k/k! 2-/~o-/~1v2/4 
k=0 

k=2 k = l  

whence on setting v = 2 z l / ~ - t ) ) ,  integrating from t = 0  to t =  1, and multiply- 
ing with z one obtains 

1 
c~ k z zk+ 1/(2k + l)! = ~ Z(Jo(Zz(t(1 - t)) x/z) -1 _ z2 t(1 - t) - 1) dt. 

k = l  t - O  

The fermion part of (8.2), the first term on the right hand side, is then just 

cyo cx2 

as required. 
Derivation of the boson part starts from the formulae 

p+l<n 
( l + x + y ) " =  ~ ~ 'xP(+y)Zn! /p ! l t (n -p - l ) [  

O<_p,O<l 
and 

t3(1 - t2)--(p+ 1 ) =  ~ (P-I-r-  1 t t2r+ 1 

r = l \  P / 

(cf. [9, p. 10]), which yield 

t3(2(1 -t2))  - 1((1 +(1 - t  2) 1 +y ) " - (1  +(1 - t  2) 1 _y) ,  

v+~k+~<=, n! ( p + r - - 1 ]  , 

O<=p,O<=2k+lp!(2k+l)!(n-p-2k-1) ! r=l \ ~ P ! tZ r+ lyZk+  

Thus by the argument of the Hadamard multiplication theorem [15, w 4.6] 

(8.5) 1 ~ t 3 ~[1 1 v\" (1 1 "} 

= Z p ! ( Z k + l ) ! ( n - p - 2 k - 1 ) !  p 0Np, 0<2k+  1 

Note that each side of (8.5) is 0 for n=0,  1, 2. Setting v=  1 in (8.5) gives the 
boson part of 6(n). (This causes no convergence problems since the expressions 
under consideration are polynomials in y and v.) The boson part of (8.2), the 
second term on the right hand side, is then obtained on multiplying by z"/n! 
and summing from n = 0  to oo. 



Commutative Moufang Loops and Bessel Functions 187 

References 

0. Aigner, M.: Kombinatorik I. Berlin-Heidelberg-New York: Springer 1975 
1. Bruck, R.H.: A Survey of Binary Systems. Berlin-Heidelberg-New York: Springer 1958 
2. Carlitz, L.: The coefficients of the reciprocal of Jo(x). Arch. Math. 6, 121-127 (1955) 
3. Coxeter, H.S.M., Moser, W.O.J.: Generators and Relations for Discrete Groups. Berlin- 

G6ttingen-Heidelberg: Springer 1957 
4. Forsyth, A.R.: The expression of Bessel functions of positive order as products, and of their 

inverse powers as sums of rational functions. Mess. Math. 1, 129-149 (1921) 
5. Hilton, P.J., Wylie, S.: Homology Theory. Cambridge: Cambridge 1962 
6. Malbos, J.-P.: Sur la classe de nilpotence des boucles commutatives de Moufang et des espaces 

m6diaux. C.R. Acad. Sci. Paris Set. A. 287, 691-693 (1978) 
7. Manin, Ju.l.: Kubi~eskie Formy. Moskva: Nauka 1972 
8. Manin, Ju.I. (tr. Hazewinkel, M.): Cubic Forms. Amsterdam: North-Holland 1974 
9. Riordan, J.: An Introduction to Combinatorial Analysis. New York-London-Sydney: John 

Wiley 1958 
10. Riordan, J.: Inverse relations and combinatorial identities. Amer. Math. Monthly 71, 485-498 

(1964) 
11. Smith, J.D.H.: A second grammar of associators. Math. Proc. Camb. Phil. Soc. 84, 405-415 

(1978) 
12. Smith, J.D.H.: On the nilpo~ence class of commutative Moufang loops. Math. Proc. Camb. 

Phil. Soc. 84, 387-404 (1978) 
13. Smith, J.D.H.: Mal'cev Varieties. Berlin-Heidelberg-New York: Springer 1976 
14. Steinfeld, O.: On groupoid-lattices. In: Contributions to General Algebra (eds. Kautschitsch, 

H., Mtiller, W.B., N6bauer, W.), pp. 357 372. Klagenfurt: Johannes Heyn (1979) 
15. Titchmarsh, E.C.: The Theory of Functions. Oxford: Oxford University Press 1932 

Oblatum 3-IV-1981 & 4-XII-1981 & 19-1-1982 


