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Comtrans algebras, Thomas sums, and bilinear forms

By

Bokhee Im1) and Jonathan D. H. Smith

Abstract. A comtrans algebra is said to decompose as the Thomas sum of two subalgebras if
it is a direct sum at the module level, and if its algebra structure is obtained from the subalgebras
and their mutual interactions as a sum of the corresponding split extensions. In this paper, we
investigate Thomas sums of comtrans algebras of bilinear forms. General necessary and sufficient
conditions are given for the decomposition of the comtrans algebra of a bilinear form as a Thomas
sum. Over rings in which 2 is not a zero divisor, comtrans algebras of symmetric bilinear forms
are identified as Thomas summands of algebras of infinitesimal isometries of extended spaces,
the complementary Thomas summand being the algebra of infinitesimal isometries of the original
space. The corresponding Thomas duals are also identified. These results represent generalizations
of earlier results concerning the comtrans algebras of finite-dimensional Euclidean spaces, which
were obtained using known properties of symmetric spaces. By contrast, the methods of the current
paper involve only the theory of comtrans algebras.

1. Introduction. Comtrans algebras are unital modules over a commutative ring R,
equipped with two basic trilinear operations: a commutator [x, y, z] satisfying the left
alternative identity

[x, x, y] = 0,( 1.1)

and a translator 〈x, y, z〉 satisfying the Jacobi identity

〈x, y, z〉 + 〈y, z, x〉 + 〈z, x, y〉 = 0,( 1.2)

such that together the commutator and translator satisfy the comtrans identity

[x, y, x] = 〈x, y, x〉.( 1.3)

Comtrans algebras were originally introduced [13] in answer to a problem from differential
geometry, asking for the algebraic structure in the tangent bundle corresponding to the
coordinate n-ary loop of an (n + 1)-web (cf. [3]). The role played by comtrans algebras
is analogous to the role played by the Lie algebra of a Lie group. In particular, given
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a Lie algebra L with bilinear commutator [x, y] over R, one obtains a comtrans algebra
CT(L) by setting

[x, y, z] = 〈x, y, z〉 = [[x, y], z]( 1.4)

for x, y, z in L [11]. A comtrans algebra is said to be monic if its commutator and translator
agree. Thus for any Lie algebra L, the comtrans algebra CT(L) is monic. Generalizing
terminology from Lie algebras, a comtrans algebra is said to be abelian if its commutator
and translator are zero. Thus abelian comtrans algebras are essentially just R-modules.

Amongst the diverse ways in which comtrans algebras arise [5], [6], [8], [10], [11], [12],
[14], this paper focuses on the comtrans algebra CT(E, β) furnished by a formed module
(E, β), an R-module E equipped with a bilinear form β. The comtrans algebra CT(E, β)

has underlying module E. Its algebra structure is defined by

[x, y, z] = yβ(x, z) − xβ(y, z)( 1.5)

and

〈x, y, z〉 = yβ(z, x) − xβ(y, z)( 1.6)

[10]. (Note that CT(E, β) is monic if β is symmetric.) In this context, we investigate the
concept of a Thomas sum

G = E T© F( 1.7)

of comtrans algebras (see [5] and Section 3 below, comparing with “Thomas decom-
positions” as identified in [2, p. 502]). In (1.7), the comtrans algebra G is a module direct
sum of subalgebras E and F , each of which acts on the other (as outlined in Section 2).
The algebra structure of G is recovered from the subalgebras and their mutual interactions.
Thus (1.7) does not just give a decomposition of a known algebra G, but may also be used to
construct an algebra G from smaller algebras E and F . Going beyond the initial treatment
of Thomas sums in [5], Section 3 of the current paper relates the Thomas sum construction
to the split extensions constructed in [9] as part of the representation theory of comtrans
algebras.

There are three main results in the paper. Theorem 4.1 specifies the exact conditions
under which the comtrans algebra of a formed module decomposes as a Thomas sum.
If the summands are free modules, then the conditions reduce to the mutual orthogonality
of the summands (Corollary 4.2), but an example shows that orthogonality is too strong in
the general case. The second main result, Theorem 6.4, generalizes work in [5] exhibiting
the comtrans algebra of a finite-dimensional Euclidean space as a Thomas summand of
a comtrans algebra of skew-symmetric matrices. For general commutative rings R, the
analytic method of passing from orthogonal transformations to infinitesimal isometries
represented by the skew-symmetric matrices is no longer available. Thus Section 3 recalls
the purely algebraic analogue of this passage provided by use of the dual numbers over R.
The infinitesimal isometries of a formed module (E, β) constitute a Lie algebra, whose
comtrans algebra obtained via (1.4) is called the isometry algebra O(β) of the formed
module. Under a mild assumption (namely that 2 is not a zero divisor in R), Theorem 6.4
then exhibits the comtrans algebra of a formed module (E, β) with symmetric form β as a
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Thomas summand in a larger isometry algebra O(β ⊕1), the other Thomas summand being
the isometry algebra O(β). Now in the context of Thomas sums of comtrans algebras, there
is a notion of duality called Thomas duality which serves as an algebraic generalization of
aspects of symmetric space duality and Weyl’s unitary trick (see [5] and the beginning of
Section 7). The final result of the paper, Theorem 7.2, then identifies an isometry algebra
O(β ⊕ −1) as the Thomas dual of the Thomas sum furnished by Theorem 6.4. It is worth
noting that the results on finite-dimensional Euclidean spaces in [5] (cf. Example 7.3 for
the physically most relevant case) were proved using known properties of Lie algebras and
symmetric spaces, while the proofs of the much more general theorems of the current paper
lie entirely within the theory of comtrans algebras.

For concepts and conventions of algebra that are not otherwise explained here, readers
are referred to [15].

2. Enveloping algebras. The class CTR of all comtrans algebras over a ring R forms
a variety in the sense of universal algebra. This variety becomes (the class of objects of) a
bicomplete category whose morphisms are the homomorphisms between comtrans algebras
(cf. Theorems IV 2.1.3 and 2.2.3 of [15]). For a member E of CTR , let E[X] denote the
coproduct of E in CTR with the free CTR-algebra on a singleton {X}. For x, y in E, there
are R-module homomorphisms

K(x, y) : E[X] → E[X]; z �→ [z, x, y],( 2.1)

R(x, y) : E[X] → E[X]; z �→ 〈z, x, y〉,( 2.2)

and

L(x, y) : E[X] → E[X]; z �→ 〈y, x, z〉.( 2.3)

The universal enveloping algebra U(E) of E is the R-subalgebra of the endomorphism
ring of the R-module E[X] generated by [9].

{K(x, y), R(x, y), L(x, y) | x, y ∈ E}
A comtrans algebra E is said to act on another comtrans algebra F if the R-module F is

a module over the enveloping algebra U(E) of E. The action is trivial if

f K(e, e′) = f R(e, e′) = f L(e, e′) = 0

for all f in F and e, e′ in E. The algebras E and F are said to interact mutually if each
acts on the other.

3. Thomas sums

D e f i n i t i o n 3.1. A comtrans algebra G is said to be the internal Thomas sum of
subalgebras E and F if:
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(1) as a module, G is the internal direct sum of its submodules E and F ; and
(2) the containments

[E, F, F ] � E, [F, E, F ] � E, [F, F, E] � E,( 3.1)

〈E, F, F 〉 � E, 〈F, E, F 〉 � E, 〈F, F, E〉 � E,( 3.2)

[F, E, E] � F, [E, F, E] � F, [E, E, F ] � F,( 3.3)

〈F, E, E〉 � F, 〈E, F, E〉 � F, 〈E, E, F 〉 � F( 3.4)

are satisfied.

D e f i n i t i o n 3.2. Let E and F be two mutually interacting comtrans algebras over a
ring R. Their external Thomas sum is defined to be the external direct sum G = E ⊕ F of
the R-modules E and F , equipped with a commutator

[e1 + f1, e2 + f2, e3 + f3] = [e1, e2, e3] + [f1, f2, f3] + e1K(f2, f3)

− e2K(f1, f3) + e3{L(f2, f1) + R(f2, f1) − K(f2, f1)}
+ f1K(e2, e3) − f2K(e1, e3) + f3{L(e2, e1) + R(e2, e1) − K(e2, e1)}

and a translator

〈e1 + f1, e2 + f2, e3 + f3〉 = 〈e1, e2, e3〉 + 〈f1, f2, f3〉
+ e1R(f2, f3) − e2{R(f3, f1) + L(f1, f3)} + e3L(f2, f1)

+ f1R(e2, e3) − f2{R(e3, e1) + L(e1, e3)} + f3L(e2, e1)

defined using elements ei of E and fi of F .

Proposition 3.3 [5, Prop. 4.2]. The external Thomas sum G of two mutually interacting
comtrans algebras E and F over R is a comtrans algebra. This comtrans algebra G is
the internal Thomas sum of its subalgebras E ⊕ {0} and {0} ⊕ F . Conversely, suppose
that a comtrans algebra G is the internal Thomas sum of subalgebras E and F . Then G is
isomorphic to the external Thomas sum of E and F .

On the strength of Proposition 3.3, one abuses language and suppresses the distinction
between internal and external Thomas sums, speaking simply of the Thomas sum of two
mutually interacting comtrans algebras. This usage is similar to that for direct sums. Indeed,
Thomas sums specialize to direct sums in the case where the mutual interaction is trivial.
The notation G = E T© F is used to record that a comtrans algebra G is a Thomas sum of
E and F , although it does not indicate the specific mutual interaction of the subalgebras.

For a comtrans algebra E, Theorem 3.10 of [9] exhibited an equivalence between the
category of U(E)-modules and the category of abelian groups in the slice category CTR/E.
(The latter objects are modules in the sense of Beck [1].) In particular, it was shown that
a U(E)-module V furnishes a split extension comtrans algebra structure V �E on the
R-module V ⊕ E. Comparison between Proposition 3.4 of [9] and Definition 3.2 above
shows that this split extension may be described as the Thomas sum V T© E of the abelian
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algebra V and E, with the given action of E on V and the trivial action of V on E.
Conversely, Thomas sums may be described in terms of split extensions. To this end,
it is helpful to have the option of putting the split extension structure furnished by the
U(E)-module V on the underlying module E ⊕ V rather than on V ⊕ E. In such format
the split extension is written as E�V . Now recall that the collection of all comtrans
algebra structures on a given R-module G itself has an R-module structure. Specifically,
given scalars r1, r2 ∈ R and comtrans algebras G1 = (G, [x, y, z]1, 〈x, y, z〉1), G2 =
(G, [x, y, z]2, 〈x, y, z〉2), there is a comtrans algebra r1G1 + r2G2 given by

(G, r1[x, y, z]1 + r2[x, y, z]2, r1〈x, y, z〉1 + r2〈x, y, z〉2).( 3.5)

Examination of Definition 3.2 then shows that

E T© F = E�F + E�F

specifies the external Thomas sum of two mutually interacting comtrans algebras E and F .

4. Formed modules.

Theorem 4.1. Let (G, β) be a formed module, with submodules E and F . Then the
comtrans algebra CT(G, β) decomposes as the Thomas sum CT(E, β) T© CT(F, β) if and
only if the following three conditions are satisfied:

(a) The module G is the direct sum of the submodules E and F ;
(b) ∀e ∈ E, ∀f ∈ F, β(e, f ) ∈ An E ∩ An F ;
(c) ∀e ∈ E, ∀f ∈ F, β(f, e) ∈ An E ∩ An F .

P r o o f. Note that the conditions (a)–(c) are symmetric in E and F . First suppose that
the conditions are satisfied. Consider elements e, e′ of E and f, f ′ of F . Then by (1.5),

[e, f, f ′] = fβ(e, f ′) − eβ(f, f ′) ∈ E,

the first term of the difference vanishing since β(e, f ′) ∈ An F by (b). This verifies the
first containment of (3.1). By (1.6),

〈f, e, e′〉 = eβ(e′, f ) − fβ(e, e′) ∈ F,

the first term of the difference vanishing since β(e′, f ) ∈ An E by (b). This verifies the
first containment of (3.4). Verification of the other containments of (3.1)–(3.4) is similar,
producing CT(G, β) as the (internal) Thomas sum CT(E, β) T© CT(F, β).

Conversely, suppose that CT(G, β) decomposes as the (internal) Thomas sum
CT(E, β) T© CT(F, β). Condition (a) is just part of this assumption. Consider elements
e, e′ of E and f , f ′ of F . Then

fβ(e, f ′) = eβ(f, f ′) + [e, f, f ′] ∈ E ∩ F = {0},
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the membership in E resulting from the first containment of (3.1), and the final equality
holding by (a). Thus

∀e ∈ E, ∀f ∈ F, β(e, f ) ∈ An F.( 4.1)

Similarly,

eβ(e′, f ) = fβ(e, e′) + 〈f, e, e′〉 ∈ F ∩ E = {0},
the membership in F resulting from the first containment of (3.4), and the final equality
holding by (a). Thus

∀e ∈ E, ∀f ∈ F, β(e, f ) ∈ An E.( 4.2)

Together, (4.1) and (4.2) yield condition (b). Condition (c) follows immediately by the
symmetry between E and F . �

Recall that a subset E of a formed module (G, β) is orthogonal to a subset F if

∀e ∈ E, ∀f ∈ F, β(e, f ) = 0( 4.3)

[4, §5.2]. The subsets are said to be mutually orthogonal if E is orthogonal to F and F is
orthogonal to E.

Corollary 4.2. Let (G, β) be a formed module whose underlying module is a direct sum
of free submodules E and F . Then the comtrans algebra CT(G, β) decomposes as the
Thomas sum CT(E, β) T© CT(F, β) if and only if the submodules E and F are mutually
orthogonal.

P r o o f. If the submodules E and F are mutually orthogonal, then the conditions (b) and
(c) of Theorem 4.1 are certainly satisfied, so that CT(G, β) decomposes as the Thomas sum
CT(E, β) T© CT(F, β). Conversely, suppose that CT(G, β) = CT(E, β) T© CT(F, β).
Since the submodules E and F are free, their annihilators are trivial. The conditions
(b) and (c) of Theorem 4.1 thus show that E and F are mutually orthogonal. �

E x a m p l e 4.3. Let S be a non-zero unital, commutative ring. Let R = S[X]/X3S[X]
be the quotient of the polynomial ring S[X] by the ideal generated by X3. Let E =
F = XR as R-modules. Note that An E = An F = X2R. Consider the direct sum
G = E ⊕ F . Define a symmetric bilinear form β on G by β((Xp1, Xq1), (Xp2, Xq2)) =
X2(p1q2+p2q1) for pi, qi ∈ R. Note that β((X, 0), (0, X)) = X2 �= 0, so the submodules
E and F are not mutually orthogonal. On the other hand, the conditions of Theorem 4.1 are
satisfied, so that CT(G, β) does decompose as the Thomas sum CT(E, β) T© CT(F, β).

5. Infinitesimal isometries. For a commutative, unital ring R, the ring R[ε] of dual
numbers over R is the quotient R[X]/〈X2〉, the element ε being identified as the coset of
X [7, 16, 17]. The forgetful functor from the category of R[ε]-modules to the category of
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R-modules has a left adjoint given by tensoring with R[ε] over R. Usually the canonical
extension of an R-morphism θ : E → F to an R[ε]-morphism R[ε] ⊗R E → R[ε] ⊗R F

is denoted by the same symbol θ . Then a formed module (E, β) over R, described by the
linear map β : E ⊗R E → R, yields a formed module over R[ε] described by the image of
the morphism β under the left adjoint. Thus

β(e1 + εf1, e2 + εf2) = β(e1, e2) + ε [β(e1, f2) + β(f1, e2)]

for ei, fj in E.
Let ϕ be an endomorphism of an R-module E, extending canonically to an R[ε]-

endomorphism ϕ of R[ε] ⊗R E. Then the exponential is the map

exp ϕ : R[ε] ⊗R E → R[ε] ⊗R E; x �→ x + εxϕ.

Note that for endomorphisms θ, ϕ of E, one has

exp θ exp ϕ = exp(θ + ϕ).

D e f i n i t i o n 5.1. An infinitesimal isometry of a formed module (E, β) is an endo-
morphism of E whose exponential is an isometry of the corresponding formed module
over R[ε].

Proposition 5.2. An endomorphism ϕ of the underlying module E of a formed module
(E, β) is an infinitesimal isometry if and only if

∀ x, y ∈ E, β(xϕ, y) + β(x, yϕ) = 0.( 5.1)

P r o o f. Consider the equation

β(x exp ϕ, y exp ϕ) = β(x + εxϕ, y + εyϕ)

= β(x, y) + ε [β(xϕ, y) + β(x, yϕ)] .( 5.2)

If exp ϕ is an isometry, then (5.2) holds for x, y in E. Thus the coefficient of ε there, namely
the predicate of (5.1), vanishes. Conversely, if (5.1) holds, then ε [β(xϕ, y) + β(x, yϕ)]
vanishes for all x, y in R[ε] ⊗R E, so that exp ϕ is an isometry. �

Corollary 5.3. The set of infinitesimal isometries of a formed module (E, β) forms a Lie
algebra o(β) under the binary commutator [ϕ1, ϕ2] = ϕ1ϕ2 − ϕ2ϕ1.

P r o o f. Suppose ϕi ∈ o(β) for i = 1, 2, so that β(xϕi, y) = −β(x, yϕi) for x, y ∈ E.
Then

β(x[ϕ1, ϕ2], y) = β(x(ϕ1ϕ2 − ϕ2ϕ1), y)

= β(xϕ1ϕ2, y) − β(xϕ2ϕ1, y)

= −β(xϕ1, yϕ2) + β(xϕ2, yϕ1)

= β(x, yϕ2ϕ1) − β(x, yϕ1ϕ2)

= β(x, y(ϕ2ϕ1 − ϕ1ϕ2)) = −β(x, y[ϕ1, ϕ2])

for x, y ∈ E, as required. �
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For a formed module (E, β), the monic comtrans algebra furnished according to (1.4)
by the Lie algebra o(β) is denoted by O(β). It is called the isometry algebra of the formed
module (E, β).

6. Formed modules in isometry algebras. Let (E, β) be a formed module over a
commutative unital ring R, with corresponding isometry algebra O(β). Let b be a scalar.
Consider the formed module (E ⊕ R, β ⊕ b) with

(β ⊕ b)((x, r), (y, s)) = β(x, y) + brs

for x, y in E and scalars r, s in R. Let O(β ⊕ b) be the isometry algebra of (E ⊕R, β ⊕ b).
Note that an endomorphism � of E ⊕ R may be decomposed in the general form

� : E ⊕ R → E ⊕ R; (e, r) �→ (eϕ + rx, eη + rm)( 6.1)

for a scalar m from R, an element x of E, a functional η on E, and an endomorphism ϕ of
the R-module E.

Proposition 6.1. The endomorphism (6.1) is an infinitesimal isometry of β ⊕ b if and
only if the following conditions are satisfied:

(a) 2bm = 0;
(b) ∀e ∈ E, beη = −β(e, x) = −β(x, e);
(c) ϕ ∈ O(β).

P r o o f. The condition (5.1) on � reduces to

0 = (β ⊕ b)((e, r)�, (f, s)) + (β ⊕ b)((e, r), (f, s)�)

= β(eϕ, f ) + β(e, f ϕ) + r[β(x, f ) + bf η]

+ s[β(e, x) + beη] + 2bmrs( 6.2)

for elements (e, r) and (f, s) of E ⊕ R. If the conditions (a)–(c) of the proposition hold,
then it is clear that � is an infinitesimal isometry of β ⊕ b. Conversely, suppose that � is
such an infinitesimal isometry. Setting e = f = 0, r = s = 1 in (6.2) yields (a). Setting
f = 0, s = 1 and e = 0, r = 1 respectively then yields (b). If the conditions (a) and (b)
hold, then (6.2) reduces to condition (c). �

Corollary 6.2. There is a comtrans algebra embedding

O(β) → O(β ⊕ b); ϕ �→ ((e, r) �→ (eϕ, 0)).

On the strength of Corollary 6.2, the algebra O(β) is identified with its image inside
O(β ⊕ b). Consider the complement C(β, b) of this image consisting of those endomor-
phisms (6.1) with ϕ = 0 that satisfy the conditions (a) and (b) of Proposition 6.1. In general,
this complement need not form a subalgebra of O(β ⊕ b).
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E x a m p l e 6.3. Let the formed module (E, β) be the real line with β = 0, and take
b = 0. Represent endomorphisms of E⊕R by their matrices with respect to {(1, 0), (0, 1)}.
Then the conditions (a) and (b) of Proposition 6.1 are vacuous, so that C(β, b) consists of
all 2×2 real matrices with zero in the top left hand corner. This set of matrices is not closed
under the ternary commutator.

Theorem 6.4. Let (E, β) be a formed module with symmetric bilinear form β, over a
commutative ring R in which 2 is not a zero divisor. Then the isometry algebra of the formed
module (E ⊕ R, β ⊕ 1) decomposes as a Thomas sum

O(β ⊕ 1) = CT(E, β) T© O(β)( 6.3)

of subalgebras isomorphic to CT(E, β) and O(β).

P r o o f. Use Corollary 6.2 to identify the algebra O(β) with its image inside O(β ⊕ 1).
Under the stated conditions, the complement C(β, 1) of this image consists of endomor-
phisms of the form

(e, r) �→ (rx, −β(e, x))

for elements x of E. It is straightforward to verify that the injective module homomorphism

E → O(β ⊕ 1); x �→ ((e, r) �→ (rx, −β(e, x)))( 6.4)

is actually a comtrans algebra homomorphism from the monic formed algebra CT(E, β).
Identifying elements of E with their images under this comtrans homomorphism (6.4), the
module O(β ⊕ 1) then decomposes as an internal direct sum CT(E, β) ⊕ O(β). It remains
to establish the mutual interactions of the subalgebras inside the isometry algebra O(β ⊕1).
Since this isometry algebra is monic, it suffices to consider the commutators alone. Now
for x in E and θ, ϕ in O(β), one has

[x, θ, ϕ] : (e, r) �→ (rxθϕ, −β(eϕθ, x))

by (6.4) and Corollary 6.2. On the other hand, β(eϕθ, x) = β(eϕ, xθ) = β(e, xθϕ)

for all e in E by (5.1). Thus the action of O(β) on CT(E, β) is given by

[x, θ, ϕ] = xθϕ.

Similarly, for x, y in E and ϕ in O(β), (6.4) and Corollary 6.2 yield

[ϕ, x, y] : (e, r) �→ (−yβ(eϕ, x) − xϕβ(e, y), r [β(xϕ, y) + β(x, yϕ)]).

The second component of the image vanishes since ϕ ∈ O(β). Consider the endomorphism

ψ : e �→ −yβ(eϕ, x) − xϕβ(e, y)
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of the module E. For elements e, f of E, one has

β(eψ, f ) + β(e, f ψ)

= − β(y, f )β(eϕ, x) − β(e, y)β(xϕ, f )

− β(f ϕ, x)β(e, y) − β(f, y)β(e, xϕ)

= − β(y, f ) [β(eϕ, x) + β(e, xϕ)]

− β(e, y) [β(f ϕ, x) + β(f, xϕ)] = 0,

again since ϕ ∈ O(β). Thus [ϕ, x, y] = ψ ∈ O(β). �

7. Thomas duality. Given a comtrans algebra E, its negation E is the negation −E

of E in the R-module (3.5) of all comtrans algebra structures on the underlying R-module
of E. Note that the negation of E is E itself. Although the negation of a comtrans algebra
E is not generally isomorphic to E (unless R contains a square root of −1), the universal
enveloping algebras of E and E coincide. For a formed space (E, β), equations (1.5) and
(1.6) show that the negation of CT(E, β) is CT(E, −β). (Indeed, the map β �→ CT(E, β)

yields an R-module homomorphism from the module of bilinear forms on E to the module
(3.5) of comtrans algebra structures on E.)

D e f i n i t i o n 7.1. Let E and F be comtrans algebras. Let G = E T© F be a Thomas
sum of E and F , given by actions η : U(E) → EndR(F ) and ϕ : U(F) → EndR(E).
Then the dual G∗ = E T© F is the Thomas sum of E and F given by the action −η

of U(E) = U(E) on F and the action ϕ of U(F) on the equal underlying R-modules
of E and E.

Theorem 7.2. Let (E, β) be a formed module with symmetric bilinear form β, over a
commutative ring R in which 2 is not a zero divisor. Then the isometry algebra of the formed
module (E ⊕ R, β ⊕ −1) decomposes as the Thomas sum

O(β ⊕ −1) = CT(E, −β) T© O(β)( 7.1)

dual to (6.3).

P r o o f. As in the proof of Theorem 6.4, use Corollary 6.2 to identify the algebra O(β)

with its image inside O(β ⊕ 1). Under the hypotheses of Theorem 7.2, the complement
C(β, −1) of this image consists of endomorphisms of the form

(e, r) �→ (rx, β(e, x))

for elements x of E. It is again straightforward to verify that the injective module homo-
morphism

E → O(β ⊕ −1); x �→ ((e, r) �→ (rx, β(e, x)))( 7.2)

is actually a comtrans algebra homomorphism from the negation E of the monic formed
algebra CT(E, β). Identifying elements of E with their images under this comtrans
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homomorphism (7.2), the module O(β ⊕ −1) then decomposes as an internal direct sum
E ⊕ O(β). As before, the action of O(β) on E = CT(E, −β) is given by

[x, θ, ϕ] = xθϕ

for x in E and θ, ϕ in O(β). Now for x, y in E and ϕ in O(β), 7.2 and Corollary 6.2 yield

[ϕ, x, y] : (e, r) �→ (yβ(eϕ, x) + xϕβ(e, y), −r [β(xϕ, y) + β(x, yϕ)]).

This is the negation of the action of CT(E, β) on O(β) from (6.3), completing the proof
that (7.1) is dual to (6.3). �

E x a m p l e 7.3. The motivating instance of Theorem 7.2 from [5] is where (E, β) is
3-dimensional Euclidean space, so that CT(E, β) is the vector triple product algebra. In
this case, (7.1) is the algebra of infinitesimal isometries of Minkowski space, the Thomas
dual of the algebra (6.3) of infinitesimal isometries of 4-dimensional Euclidean space. The
Thomas summand O(β) in (7.1) represents the algebra of infinitesimal Thomas precessions
(cf. [2, pp. 502–4]).
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