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A coalgebraic approach to quasigroup permutation
representations

JONATHAN D. H. SMITH

ABSTRACT. The paper identifies the class of all permutation representations of a given fi-
nite quasigroup as a covariety of coalgebras. Each permutation representation decomposes
as a sum of homomorphic images of homogeneous spaces. For a group, permutation repre-
sentations in the present sense specialise to the classical concept. Burnside’s Lemma, with
a new proof, is extended from groups to quasigroups.

1. Introduction

Quasigroups are defined informally as “non-associative groups,” as sets equipped
with a binary operation whose multiplication table is a Latin square. One of the
major programs in the study of quasigroups has been the extension to them of
various aspects of the representation theory of groups. For summaries of character
theory, see [7, 14]. For a summary of module theory, see [13]. An active theme of
current work is to develop a theory of permutation representations for quasigroups.
The initial stage of this research [15, 16] introduced a concept of homogeneous
space for finite quasigroups. The key ideas are summarised in Section 2. Given
a subquasigroup P of a finite quasigroup @, the elements of the corresponding
homogeneous space P\ @ are the orbits on @ of the relative left multiplication group
of P in @, the group of permutations of ) generated by the left multiplications by
elements of P. Each element of Q) yields a Markov chain action on the homogeneous
space P\ (Q as a set of states. The full structure is an instance of an iterated function
system (IFS) in the sense of fractal geometry [1], formalised in the concept of a Q-
IFS described in Section 3. If P is a subgroup of a group @, then the quasigroup
homogeneous space P \ @ specialises to the usual notion of a homogeneous space
or transitive permutation representation for groups, the transition matrices of the
Markov chain actions becoming permutation matrices in this case.
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Following the determination of the homogeneous spaces over a finite quasigroup
@, current research focuses on an appropriate specification for general Q)-sets or
permutation representations of ). For a group @, arbitrary @-sets are built up
by taking disjoint unions of homogeneous spaces. Moreover, the class of @Q-sets is
closed under direct products. The class of all @-sets admits a syntactical charac-
terisation as a variety of universal algebras, the axioms essentially characterising a
Q-set (X,Q) as a set X with a group homomorphism from @ to the group X! of
permutations of the set X. In [17], an attempt was made to extend this algebraic
approach to more general quasigroups. However, because of the demand for closure
of the class of Q-sets under products, it turned out to be necessary to require Q)
to be a loop (a quasigroup with an identity element)!. An additional feature of
the approach taken in [17] was the infinite number of non-isomorphic irreducible
QQ-sets that kept appearing in repeated direct products. Burnside’s Lemma, which
holds for quasigroup homogeneous spaces (Theorem 5.1 of [15]), no longer holds for
these new irreducible Q-sets. Thus the algebraic approach to the specification of
quasigroup permutation representations has three disadvantages:

(1) The approach only works for loops, not for general quasigroups.

(2) Infinitely many non-isomorphic irreducible @Q-sets appear.

(3) Burnside’s Lemma fails.

The current paper is motivated by the desire to avoid these problems of the alge-
braic approach. The key clues are the facts that the complications arise on taking
products, and that the variety of @Q-sets over a group @ is closed under sums. Now
covarieties of coalgebras are closed under sums, but not necessarily under products.
It thus becomes natural to consider @)-sets over a quasigroup as the members of a
covariety of coalgebras.

The basic coalgebraic definitions are summarised in Section 4. The probabilistic
aspect of quasigroup @-sets is invoked via the free barycentric algebra functor B, as
described briefly in Section 5. Theorem 6.3 then shows how to pass between Q-IFS
and coalgebras over the functor B?, the |Q|-th direct power of the functor B. In
particular (Corollary 6.4), quasigroup homogeneous spaces become B?-coalgebras.
Section 7 examines the irreducibility of B@-coalgebras that are homomorphic im-
ages of homogeneous spaces. Section 8 notes that for quasigroups in general, in
contrast with the group case, the homogeneous spaces do not necessarily arise as
homomorphic images of the regular representation. Permutation representations or
@-sets over a finite quasigroup @ are then specified in Definition 9.1 as elements of
the covariety of B?-coalgebras generated by the set of homogeneous spaces over Q.

1The technical reason was as follows: if P; is a subloop of a loop Q; for i« = 1,2, then the
relative left multiplication group of P; X P in Q1 X Q2 is a direct product of the relative left
multiplication groups of P; and P». This property may break down in the absence of identity
elements.
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The main Structure Theorem 9.2 shows that general @-sets are sums of homo-
morphic images of homogeneous spaces. Corollary 9.3 observes that there are only
finitely many irreducible @Q-sets (to within isomorphism). Corollary 9.4 notes that if
@ is a finite group, then its quasigroup @-sets in the present sense coincide with its
@-sets in the usual group sense. In the final section, Burnside’s Lemma is extended
from groups to quasigroups (Theorem 10.2). It may be of interest to contrast the
proof of this generalisation with the usual combinatorial proofs for the group case.

For algebraic concepts and notations used in this paper, readers are referred to
[18]. In particular, mappings are generally placed in the natural position on the
right of their arguments, either in line or as an index. These conventions help
to minimise the number of brackets, which otherwise proliferate in the study of
non-associative systems such as quasigroups.

2. Quasigroup homogeneous spaces

The construction of a quasigroup homogeneous space for a finite quasigroup
[15, 16] is analogous to the transitive permutation representation of a group Q
(with stabiliser subgroup P) on the homogeneous space

P\Q={Pz |z€Q} (2.1)
by the actions
Rp@(q): P\Q — P\ Q; Pz — Pxq (2.2)

for elements g of Q). Let P be a subquasigroup of a finite quasigroup Q). Let L
be the relative left multiplication group of P in Q. Let P\ @ be the set of orbits
of the permutation group L on the set ). If @ is a group, and P is nonempty,
then this notation is consistent with (2.1). Let A be the incidence matrix of the
membership relation between the set @ and the set P\ Q of subsets of Q. Let AT be
the pseudoinverse [9] of the matrix A. For each element ¢ of @, right multiplication
in @Q by ¢ yields a permutation of Q). Let Rg(q) be the corresponding permutation
matrix. Define a new matrix

Rp\q(q) = AT Rq(q)A. (2.3)

[In the group case, the matrix (2.3) is just the permutation matrix given by the
permutation (2.2).] Then, in the homogeneous space of the quasigroup @, each
quasigroup element ¢ yields a Markov chain on the state space P\ @ with transition
matrix Rp\q(q) given by (2.3). The set of convex combinations of the states from
P\ @Q forms a complete metric space, and the actions (2.3) of the quasigroup
elements form an iterated function system or IFS in the sense of fractal geometry

1].
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3. The IFS category

Let @ be a finite set. Define a Q-IFS (X, Q) as a finite set X together with an
action map R or
Rx:Q — End¢(CX);q— Rx(q) (3.1)
from @ to the set of endomorphisms of the complex vector space with basis X
(identified with their matrices with respect to the basis X), such that each action
matriz Rx (q) is stochastic. For @ non-empty, the Markov matriz of a Q-IFS (X, Q)
is the arithmetic mean )
Mx,q) = 0] Z Rx(q) (32)
q€Q
of the action matrices of the elements of Q. A Q-IFS (X, @) is said to be irreducible
if the Markov chain on X given by (3.2) is irreducible (cf. XV§4 of [3]).
If P is a subquasigroup of a finite non-empty quasigroup @, then the homoge-
neous space P\ @ is a Q-IFS with the action map specified by (2.3). Each row of
the Markov matrix of the Q-IFS P\ @ takes the form

(ARl .. 1e/1QD, (3-3)

where Py,..., P, are the orbits of the relative left multiplication group of P in Q.
(Compare [17], Proposition 8.1, where this result was formulated for a loop Q. The
proof given there applies to an arbitrary non-empty quasigroup @.)

For a finite set @), a morphism

¢: (X,Q) — (Y,Q) (3.4)
from a Q-IFS (X, Q) to a Q-IFS (Y, Q) is a function ¢: X — Y, whose graph has
incidence matrix F', such that

Rx(q)F = FRy(q) (3.5)

for each element ¢ of Q. Tt is readily checked that the class of morphisms (3.4), for
a fixed set @, forms a concrete category IFS o For a group @, it was shown in [17]
that the category of finite Q-sets forms the full subcategory of @Q consisting of
those objects for which the action map (3.1) is a monoid homomorphism. Moreover,
a Q-IFS (X, Q) is a @-set if and only if it is isomorphic to a Q-set (Y, Q) in QQ.
For a fixed finite quasigroup @, the category IF'S 0 has finite products and coprod-
ucts. Consider objects (X, Q) and (Y, Q) of QQ. Their disjoint union (X +Y, Q)
consists of the disjoint union X + Y of the sets X and Y together with the action
map
q+— Rx(q) ® Ry (q) (3.6)
sending each element g of @ to the direct sum of the matrices Rx (¢q) and Ry (g). One
obtains an object of IF'S o’ since the direct sum of stochastic matrices is stochastic.
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The direct product (X x Y, Q) of (X,Q) and (Y, Q) is the direct product X x Y of
the sets X and Y together with the action map

q+— Rx(q) ® Ry (q) (3.7)

sending each element ¢ of @ to the tensor (or Kronecker) product of the matrices
Rx(q) and Ry (q). Again, one obtains an object of IES o since the tensor product
of stochastic matrices is stochastic. It is straightforward to check that the disjoint
union, equipped with the appropriate insertions, yields a coproduct in IES |, and
that the direct product, equipped with the appropriate projections, yields a product
in IFS o

4. Coalgebras and covarieties

This section summarises the basic coalgebraic concepts required for the paper.
For more details, readers may consult [4], [5] or [12]. Crudely speaking, coalgebras
are just the duals of algebras: coalgebras in a category C are algebras in the dual
category C°P.

Let F': Set — Set be an endofunctor on the category of sets and functions. Then
an F—coalge_bm, oﬁimply a coalgebra if the endofunctor is implicit in the context,
is a set X equipped with a function ax or a: X — X F. This function is known as
the structure map of the coalgebra X. (Of course, for complete precision, one may
always denote a coalgebra by its structure map.) A function f: X — Y between
coalgebras is a homomorphism if fay = axff. A subset S of a coalgebra X is
a subcoalgebra if it is itself a coalgebra such that the embedding of S in X is a
homomorphism. A coalgebra Y is a homomorphic image of a coalgebra X if there
is a surjective homomorphism f: X — Y.

Let (X; | i € I) be a family of coalgebras. Then the sum of this family is the
disjoint union of the sets of the family, equipped with a coalgebra structure map «
given as follows. Let ¢;: X; — X insert X; as a summand in the disjoint union X of
the family. For each i in I, let a; be the structure map of X;. Then the restriction
of a to the subset X; of X is given by a;if". (More generally, the forgetful functor
from coalgebras to sets creates colimits — cf. Proposition 1.1 of [2].)

A covariety of coalgebras is a class of coalgebras closed under the operations
H of taking homomorphic images, S of taking subalgebras, and ¥ of taking sums.
(Note that homomorphic images are dual to subalgebras, while sums are dual to
products.) If K is a class of F-coalgebras, then the smallest covariety containing
K is given by SHX(K) (cf. Theorem 7.5 of [4] or Theorem 3.3 of [5]). This result
is dual to the well-known characterisation of the variety generated by a class of
algebras (cf. e.g., Exercise 2.3A of Chapter IV of [18] or Proposition 1.5.12 of [11]).
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5. Barycentric algebras

This section briefly outlines the basic facts about barycentric algebras that are
used in the paper. For more details, readers may consult [10] or [11]. Let I° denote
the open unit interval ]0, 1[. For p in I°, define p’ =1 — p.

Definition 5.1. A barycentric algebra A or (A,I°) is an algebra of type I° x {2},
equipped with a binary operation
p:AXA— A;(v,y) — xyp
for each p in I°, satisfying the identities
rTPp=1T (5.1)
of idempotence for each p in I°, the identities

zyp=yxp (5.2)

of skew-commutativity for each p in I°, and the identities
zyp zq=2xy2q/(r'd) ') (5.3)
of skew-associativity for each p,q in I°. The variety of all barycentric algebras,

construed as a category with the homomorphisms as morphisms, is denoted by B.
The corresponding free algebra functor is B: Set — B.

A convex set C' forms a barycentric algebra (C, I°), with zy p = (1 —p)x + py for
z,y in C and p in I°. A semilattice (S, ) becomes a barycentric algebra on setting
xyp=wx -y for x,y in S and p in I°.

For the following result, see [8], §2.1 of [10], §5.8 of [11]. The equivalence of the
final two structures in the theorem corresponds to the identification of the barycen-
tric coordinates in a simplex with the weights in finite probability distributions.

Theorem 5.2. Let X be a finite set. The following structures are equivalent:
(a) The free barycentric algebra X B on X;

(b) The simplex spanned by X ;

(c) The set of all probability distributions on X .

6. Actions as coalgebras

Definition 6.1. Let @ be a finite set. The functor B?: Set — Set sends a set
X to the set XB? of functions from @ to the free barycentric algebra X B over
X. For a function f: X — Y, its image under the functor B? is the function
fB?: XB?® — Y B® defined by

fBY: (Q — XB;q— w) — (Q = YB;q— wfP).
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Some standard “coalgebraic” properties of the functor B% are listed for reference
in the following proposition (cf. [19], where the functor B is denoted by D).

Proposition 6.2. Let QQ be a finite set.

(a) The functor B preserves weak pullbacks.
(b) The functor B? is bounded.
(c) Each covariety of B?-coalgebras is bicomplete.

Proof. (a) By Appendix A of [19], the functor B preserves weak pullbacks. Thus
the finite power B? of B also preserves weak pullbacks (cf. Lemma 8.11 of [4]).
(b) See the proof of Theorem 4.6 of [19].

(c) Since B? is bounded, the result follows according to §7.4 of [4]. g

Theorem 6.3. Let Q be a finite set. Then the category @Q s isomorphic with
the category of finite B® -coalgebras.

Proof. Given a Q-IFS (X, Q) with action map R as in (3.1), define a B@-coalgebra
Lx: X — XB“ with structure map

Lx: X - XB% z— (Q — XB;q— zRx(q)). (6.1)

(Note the use of Theorem 5.2 interpreting the vector xRx (¢), lying in the simplex
spanned by X, as an element of X B.) Given a Q-IFS morphism ¢: (X, Q) — (Y, Q)
as in (3.4), with incidence matrix F', one has

tLx.¢B?: Q — YB;q— zRx(q)F (6.2)

for each x in X, by Definition 6.1. On the other hand, one also has
xpLy: Q — YB;q— zFRy(q). (6.3)
By (3.5), it follows that the maps (6.2) and (6.3) agree. Thus ¢: X — Y is a

coalgebra homomorphism. These constructions yield a functor from IFS o to the

category of finite B9-coalgebras.
Conversely, given a finite B%?-coalgebra with structure map Ly: X — XB9,
define a Q-IFS (X, Q) with action map

Rx:Q — Endc(CX);q — (x — gLx(x)), (6.4)

well-defined by Theorem 5.2. Let ¢: X — Y be a coalgebra homomorphism with
incidence matrix F. Then the maps (6.2) and (6.3) agree for all x in the basis X
of CX, whence (3.5) holds and ¢: (X, Q) — (Y, Q) becomes a Q-IFS morphism. In
this way one obtains mutually inverse functors between the two categories. O

Corollary 6.4. Each homogeneous space over a finite quasigroup Q yields a B?-
coalgebra.
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Corollary 6.5. Let @ be a finite group. Then the category of finite Q-sets embeds
faithfully as a full subcategory of the category of B?-coalgebras.

Proof. Apply Theorem 6.3, and Proposition 4.2 of [17]. O

7. Reachability

Definition 7.1. Let @ be a finite set. Let Y be a B®-coalgebra with structure
map L: Y — Y B?. For elements y, ¢’ of Y, the element 3/ is said to be reachable
from y in Y if there is an element ¢ of @) such that 3’ appears in the support of
the distribution ¢L(y) on Y. The reachability graph of Y is the directed graph
of the reachability relation on Y. The coalgebra Y is said to be irreducible if its
reachability graph is strongly connected.

Proposition 7.2. If P\ Q is a homogeneous space over a finite quasigroup @,
realised as a B?-coalgebra according to Corollary 6.4, then P\ Q is irreducible.

Proof. Let H be the relative left multiplication group of P in ). For an arbitrary
pair z, =’ of elements of @, consider the corresponding elements zH and x’H of
P\ Q. For ¢ = z\ 2’ in Q, the element z’H then appears in the support of
qL(zH). O

Corollary 7.3. Let Q be a finite quasigroup. Suppose thatY is a B -coalgebra that
is a homomorphic image of a homogeneous space S over Q. Then 'Y is irreducible.

Proof. Since S and Y are finite, one may use the correspondence of Theorem 6.3.
Let ¢: S — Y be the homomorphism, with incidence matrix F. Consider elements
y and 3’ of Y. Suppose x and 2z’ are elements of S with z¢ = y and z'¢ = 3. By
Proposition 7.2, there is an element ¢ of @ with z’ in the support of the distribution
2Rs(q). Then yRy (q) = ©FRy(q) = xRs(q)F, so the support of yRy (¢), as the
image of the support of zRg(g) under ¢, contains z’'¢ = g/'. O

8. Regular representations

For a quasigroup @, the regular homogeneous space or permutation representa-
tion is the homogeneous space (@, Q) or (& \ Q,Q). (Note that the relative left
multiplication group of the empty subquasigroup is trivial. If @ is a loop with
identity element e, then the regular homogeneous space may also be described as
({e} \ @, Q). This definition was used in §7 of [17].) For a group @, each homoge-
neous space (P \ @, Q) is obtained as a homomorphic image of the regular permu-
tation representation. The following considerations show that the corresponding
property does not hold for general quasigroups.
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Definition 8.1. Let @Q be a finite set. A Q-IFS (X, Q) is said to be crisp if, for each
q in Q, the action matrix Rx(q) is a 0-1-matrix. A B%-coalgebra L: X — XB® is
said to be crisp if its structure map corestricts to L: X — X©<.

Note that crisp Q-IFS and finite crisp B?-coalgebras correspond under the iso-
morphism of Theorem 6.3.

Proposition 8.2. Homomorphic images of finite crisp B?-coalgebras are crisp.

Proof. Using Theorem 6.3, it is simpler to work in the category IES o Let ¢p: X —
Y be a surjective IFS Q—morphism with incidence matrix F' and crisp domain. For
an element y of Y, suppose that = is an element of X with ¢ = y. Then for each
element ¢ of @, one has yRy (q) = ©¢Ry(¢) = xF Ry (q¢) = xRx(¢)F, using (3.5)
for the last step. Since X is crisp, there is an element 2’ of X with xRx(q) = z'.
Then yRy (¢) = 2’ F =y’ for the element 3y’ = 2’¢ of Y. Thus Y is also crisp. O

For each finite quasigroup @, the regular permutation representation is crisp.
On the other hand, if @) is non-associative, then ) may have homogeneous spaces
which are not crisp (cf. §3 of [15] or (6.2) of [17]). Proposition 8.2 shows that such
spaces are not homomorphic images of the regular representation.

9. The covariety of Q-sets

Definition 9.1. Let @ be a finite quasigroup. Then the category Q of Q-sets or

of permutation representations of Q is defined to be the covariety of EQ—coalgebras
generated by the (finite) set of homogeneous spaces over Q.

For a finite quasigroup @, the terms “Q-set” or “permutation representation
of Q7 are used for objects of the category of )-sets, and also for those Q-IFS which
correspond to finite Q-sets via Theorem 6.3. (For a finite loop @, these terms were
used in a different, essentially broader sense — at least for the finite case — in
Definition 5.2 of [17]. If necessary, one may refer to “loop Q-sets” in that context,
and to “proper Q-sets” or “quasigroup @-sets” in the present context.)

Theorem 9.2. For a finite quasigroup @, the Q-sets are precisely the sums of
homomorphic images of homogeneous spaces.

Proof. Let H be the set of homogeneous spaces over (). By Proposition 2.4 of [6],
the covariety generated by H is HS2(H). By Proposition 2.5 of [6], the operators
S and ¥ commute. By Proposition 7.2, the homogeneous spaces do not contain
any proper, non-empty subcoalgebras. Thus the covariety generated by H becomes
HX(H). By Proposition 2.4(iii) of [6], one has SH(H) C H2(H). It thus remains to
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be shown that each homomorphic image of a sum of homogeneous spaces is a sum
of homomorphic images of homogeneous spaces.

Let Y be a @-set, with structure map Ly, that is a homomorphic image of a
sum X of homogeneous spaces under a homomorphism ¢. It will first be shown
that each element y of Y lies in a subcoalgebra Y, of Y that is a homomorphic
image of a homogeneous space. Since y lies in the image Y of X under ¢, there is
an element = of X such that x¢ = y. Since X is a sum of homogeneous spaces, the
element z lies in such a space S. Consider the restriction of ¢ to S. Let Y, be the
image of this restriction. Then Y}, is a subcoalgebra of ¥ that is a homomorphic
image of a homogeneous space (cf. Lemma 4.5 of [4]).

Now suppose that for elements y and z of Y, the corresponding images Y, and
Y, of homogeneous spaces intersect non-trivially, say with a common element ¢.
By Corollary 7.3, there is an element ¢ of @ such that z lies in the support of
gLy (t). On the other hand, since t lies in the subcoalgebra Y}, the support of the
distribution gLy (t) lies entirely in Y,. Thus z is an element of Y}, and for each ¢
in @, the support of the distribution gLy (2) lies entirely in Y. It follows that Y,
is entirely contained in Y. Similarly, one finds that Y}, is contained in Y., and so
the two images agree. Thus Y is a sum of such images. O

Corollary 9.3. A finite quasigroup Q has only finitely many isomorphism classes
of irreducible Q-sets.

Proof. By Theorem 9.2, the irreducible @-sets are precisely the homomorphic im-
ages of homogeneous spaces. Since () is finite, it has only finitely many homoge-
neous spaces. The (First) Isomorphism Theorem for coalgebras (cf. Theorem 4.15
of [4]) then shows that each of these homogeneous spaces has only finitely many
isomorphism classes of homomorphic images. O

Corollary 9.4. For a finite group @, the quasigroup Q-sets coincide with the group
Q-sets.

Proof. For a group @, each homomorphic image of a homogeneous space is iso-
morphic to a homogeneous space, and each group @-set is isomorphic to a sum of
homogeneous spaces. O

In considering the final corollary of Theorem 9.2, recall that the intersection
of a family of subcoalgebras of a coalgebra is not necessarily itself a subcoalgebra
(cf. Corollary 4.9 of [4]).

Corollary 9.5. Let y be an element of a Q-setY over a finite quasigroup Q). Then
the intersection of the subcoalgebras of Y containing y is itself a subcoalgebra of Y.

Proof. In the notation of the proof of Theorem 9.2, this intersection is the subcoal-
gebra Y. O
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10. Burnside’s Lemma

Definition 10.1. For a @-set Y over a finite quasigroup @, the irreducible sum-
mands of Y given by Theorem 9.2 are called the orbits of Y. For an element y of Y,
the smallest subcoalgebra of Y containing y (guaranteed to exist by Corollary 9.5)
is called the orbit of the element y.

Burnside’s Lemma concerns itself with finite permutation representations. In
the quasigroup case, its formulation (and proof) rely on the identification given by
Theorem 6.3. Recall that the classical Burnside Lemma for a finite group @ (cf. e.g.,
Theorem 3.1.2 in Chapter I of [18]) states that the number of orbits in a finite Q-set
X is equal to the average number of points of X fixed by elements ¢ of ). The
number of points fixed by such an element ¢ is equal to the trace of the permutation
matrix of ¢ on X. In the IFS terminology of §3, this permutation matrix is the
action matrix Rx(q) of ¢ on the corresponding Q-IFS (X, Q). Thus the following
theorem does specialise to the classical Burnside Lemma in the associative case.

Theorem 10.2 (Burnside’s Lemma for quasigroups). Let X be a finite Q-set over
a finite, non-empty quasigroup Q. Then the trace of the Markov matriz of X is
equal to the number of orbits of X.

Proof. Consider the Q-IFS (X,Q). By Theorem 6.3, Theorem 9.2 and (3.6), its
Markov matrix decomposes as a direct sum of the Markov matrices of its orbits.
Thus it suffices to show that the trace of the Markov matrix of a homomorphic
image of a homogeneous space is equal to 1.

Consider a Q-set Y = {y1,...,ym} which is the image of a homogeneous space
P\ @ under a surjective homomorphism ¢: P\ Q — Y with incidence matrix F'.
Let F'™ be the pseudoinverse of F'. Note that each row sum of F'* is 1. Suppose
that the Markov matrix II of P\ @ is given by (3.3). By (3.5), one has

Ry(q) = F"Rp\o(q)F

for each ¢ in (). Thus the trace of the Markov matrix of Y is given by

tr(FHIIF) = i Z Z F ML Fi
i=1 j=1k=1
=Y (X FS) (1P
i=1 j=1 k=1

T

= QI Y IR =1,

k=1
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the penultimate equality following since for each 1 < k < r, there is exactly one
index ¢ (corresponding to Pr¢ = y;) such that Fi; = 1, the other terms of this type
vanishing. O
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