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Abstract. The permutation representation theory of groups has
been extended, through quasigroups, to one-sided left (or right)
quasigroups. The current paper establishes a link with the theory
of ordered sets, introducing the concept of a Burnside order that
generalizes the poset of conjugacy classes of subgroups of a finite
group. Use of the Burnside order leads to a simplification in the
proof of key properties of the Burnside algebra of a left quasigroup.
The Burnside order for a projection left quasigroup structure on a
finite set is defined by the lattice of set partitions of that set, and
it is shown that the general direct and restricted tensor product
operations for permutation representations of the projection left
quasigroup structure both coincide with the operation of intersec-
tion on partitions. In particular, the mark matrix of the Burnside
algebra of a projection left quasigroup, a permutation-theoretic
concept, emerges as dual to the zeta function of a partition lattice,
an order-theoretic concept.

1. Introduction

The permutation representation theory of groups has been extended
to quasigroups [10]–[13], [15], and subsequently to one-sided left (or
right) quasigroups [14]. Recall that the class of left quasigroups ranges
from groups at one extreme, through quasigroups, to sets (with projec-
tions) at the other. Permutation representation theory gains in richness
as it is extended. For example, in (left) quasigroup actions, the per-
mutation matrices of group actions become more general stochastic
matrices. Similarly, the direct product of group actions splits into two
distinct products: a (direct) product [14, p.402] and a restricted ten-
sor product [15, p.124]. In each case, the underlying set of the product
need not be the product of the underlying sets of the factors. Burnside’s
Lemma has been generalized to the left quasigroup context (yet still
specializing to its classic form in the group case), with a linear-algebraic
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proof [14, §10]. Similarly, Burnside algebras have been extended from
groups to left quasigroups, with two algebra products corresponding re-
spectively to the product and restricted tensor product of permutation
representations [14, §11].

The goal of the current paper is to establish a new link between
the permutation representation theory of (left) quasigroups on the one
hand, and the theory of ordered sets on the other. This link is the
Burnside order (Section 4). The Burnside order is an ordered set of
isomorphism types [P\Q] of homogeneous spaces P\Q associated with
each finite left quasigroup Q. (The homogeneous space P\Q associ-
ated with a sub-(left)-quasigroup P of a left quasigroup Q is described
in Section 2.) For a finite group, the Burnside order is the poset of
conjugacy classes of subgroups.

A new, elementary survey of the permutation representation theory
of (left) quasigroups is presented in Sections 3–5. The presentation
avoids mention of the coalgebras that are needed for deeper questions.
Furthermore, use of the new Burnside order concept leads to a simpli-
fication in the proof of a key result in the theory (Proposition 5.3).

The Burnside algebra of a left quasigroup, recalled in Section 5, is
spanned as a vector space by the Burnside order. The main Theo-
rem 6.5 then identifies the Burnside order for a finite set (under the
left quasigroup operation of projection) as the lattice of partitions of
the set. In particular, each finite lattice embeds as a sublattice of the
Burnside order of a left quasigroup (Corollary 6.6). The mark matrix
of the Burnside algebra of a projection left quasigroup, a permutation-
theoretic concept, turns out to be dual to the zeta function of a par-
tition lattice, an order-theoretic concept. Theorems 6.8 and 7.1 show
that the Burnside algebra of the projection left quasigroup under both
the direct product and the restricted tensor product is the bilinear
extension of the operation of intersection on partitions.

Readers are referred to [15] and [16] for quasigroup-theoretic and
general algebraic concepts and conventions that are not otherwise ex-
plicitly clarified here.

2. Left quasigroups and homogeneous spaces

Just like quasigroups, left quasigroups may be defined combinatori-
ally or equationally. Combinatorially, a left quasigroup (Q, ·) is a set Q
equipped with a binary multiplication such that for all x and z, there
is a unique element y such that

(2.1) x · y = z .
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Left quasigroups cover a wide spectrum of structures. Groups (y =
x−1 · z) form one end of this spectrum. At the other end are (right)
projection (left) quasigroups, sets with the right projection operation
x · y = y. Quasigroups are left quasigroups.

Remark 2.1. Although this paper explicitly deals almost entirely with
left quasigroups, one may also consider the chirally dual notion of a
right quasigroup. Groups, and more generally quasigroups, are right
quasigroups, as are sets equipped with the left projection operation
x · y = x.

Equationally, a left quasigroup (Q, ·, \) is a set Q equipped with
binary operations of multiplication and left division \, satisfying the
identities

(SL) x · (x\z) = z and (IL) x\(x · z) = z .

A left quasigroup (Q, ·, \) is a set Q equipped with binary operations of
multiplication and left division \, satisfying the identities (SL) and (IL).
These identities correspond respectively to the existence and unique-
ness of the solution y to (2.1). Thus in groups, x\z = x−1z, while
in right projection quasigroups, x\z = z. When considering subsets
of a left quasigroup that are closed under the multiplication and left
division operations, the term subquasigroup will be used in place of the
cumbersome “sub-left-quasigroup.”

For each element x of a left quasigroup Q, the right multiplication

R(x) : Q → Q; y 7→ y · x
and left multiplication

L(x) : Q → Q; y 7→ x · y
are defined as for quasigroups. The left multiplications are elements of
the group Q! of bijections from the set Q to itself. The identity (SL)
says that each L(x) surjects, while (IL) gives the injectivity of L(x).
The left multiplication group of a left quasigroup Q is the subgroup
LMltQ = ⟨L(q) | q ∈ Q⟩Q! of Q! that is generated by the left multipli-
cations. In right projection quasigroups, left multiplication groups are
trivial. In a group Q, the map Q → LMltQ;x 7→ L(x)−1 is a group
isomorphism.

For a subquasigroup P of a left quasigroup Q, the subgroup LMltQP
of LMltQ generated by LQ(P ) = {L(p) : Q → Q | p ∈ P} is called
the relative left multiplication group of P in Q. If P is a subgroup of a
group Q, then the homogeneous space

(2.2) P\Q = {Px | x ∈ Q }
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of cosets of P is the set of orbits of LMltQP on Q. In general, if P is
a subquasigroup of a left quasigroup Q, then the homogeneous space
P\Q will be defined as the set of orbits of LMltQP on the set Q.

3. Iterated function systems

If P is a subgroup of a group Q, then the group Q has a permutation
representation on the homogeneous space (2.2) by the actions

(3.1) RP\Q(q) : P\Q → P\Q ; Px 7→ Pxq

for elements q of Q. Now let P be a subquasigroup of a left quasigroup
Q. For each element q of the left quasigroup Q, consider the Markov
chain with transition matrix RP\Q(q) on the state space P\Q, where
the probability of transition from an orbit A to an orbit B is given as

(3.2)
[
RP\Q(q)

]
AB

= |A ∩R(q)−1(B)|
/
|A| .

IfQ is a group, the transition matrix RP\Q(q) is the permutation matrix
given by the permutation action (3.1). With the uniform distribution
on the left quasigroup Q, the quotient (3.2) becomes the conditional
probability of the event xq ∈ B given x ∈ A. The set of convex
combinations of the states from P\Q forms a complete metric space,
and the actions RP\Q(q) of the left quasigroup elements q form an
iterated function system (IFS) in the sense of fractal geometry [1, 6].

Let Q be a finite set. Define a (rational) Q-IFS (X,Q) as a finite set
X together with an action map

(3.3) R : Q → EndQ(QX); q 7→ RX(q)

from Q to the set of endomorphisms of the rational vector space QX
with basis X (identified with their matrices with respect to the ba-
sis X), such that each action matrix RX(q) is stochastic. If P is a
subquasigroup of a finite non-empty left quasigroup Q, then the homo-
geneous space P\Q is a Q-IFS with the action map specified by (3.2).
A morphism or (Q-)homomorphism

(3.4) ϕ : (X,Q) → (Y,Q)

from a Q-IFS (X,Q) to a Q-IFS (Y,Q) is a function ϕ : X → Y , whose
graph has incidence matrix F , such that the intertwining relation

(3.5) RX(q)F = FRY (q)

is satisfied for each element q of Q. It is readily checked that the class
of morphisms (3.4), for a fixed finite set Q, forms a concrete category
IFSQ. The following proposition serves to define homomorphic images.
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Proposition 3.1. Let ϕ : (X,Q) → (Y,Q) be a Q-IFS homomorphism.
Let Z = Xϕ. Then the subspace QZ of QY is invariant under the set
{RY (q) | q ∈ Q} of actions in (Y,Q).

Proof. Consider an element z of Z, say z = xϕ for x ∈ X, and an
element q of Q. Suppose xRX(q) =

∑
t∈X rtt for rational numbers

rt. Then (3.5) implies zRY (q) = xϕRY (q) = xFRY (q) = xRX(q)F =(∑
t∈X rtt

)
F =

∑
t∈X rt(tF ) =

∑
t∈X rt(tϕ) ∈ QZ. �

Definition 3.2. In the context of Proposition 3.1, the Q-IFS (Z,Q)
with action map R : Q → EndQ(QZ); q 7→ RY (q)

∣∣
QZ

is known as:

(a) the homomorphic image of (the Q-IFS (X,Q) under) the Q-IFS
homomorphism ϕ : (X,Q) → (Y,Q), and as

(b) a sub-Q-IFS of the Q-IFS (Y,Q).

Group permutation representations appear in the IFS context as
follows [15, Prop. 5.1].

Proposition 3.3. Let Q be a finite group.

(a) The category of finite Q-sets forms the full subcategory of IFSQ

consisting of those objects for which the action map (3.3) is a
monoid homomorphism.

(b) A Q-IFS (X,Q) is a Q-set if and only if it is isomorphic to a
Q-set (Y,Q) in IFSQ.

For a fixed finite set Q, the category IFSQ has finite sums or co-
products. Consider objects (X,Q) and (Y,Q) of IFSQ. Their sum or
disjoint union (X + Y,Q) consists of the disjoint union X + Y of the
sets X and Y together with the action map

(3.6) q 7→ RX(q)⊕RY (q)

sending each element q of Q to the direct sum of the matrices RX(q)
and RY (q). One obtains an object of IFSQ, since the direct sum of
stochastic matrices is stochastic. The disjoint union, equipped with
the appropriate insertions, yields a sum or coproduct in IFSQ [15,
Th. 5.1]. The tensor product (X ⊗ Y,Q) of (X,Q) and (Y,Q) is the
direct product X × Y of the sets X and Y together with the action
map

q 7→ RX(q)⊗RY (q)

sending each element q of Q to the tensor (or Kronecker) product of
the matrices RX(q) and RY (q). In other words, one has[

RX⊗Y (q)
]
(A×C)(B×D)

=
[
RX(q)

]
AB

·
[
RY (q)

]
CD
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for A,B ∈ X and C,D ∈ Y . Again, one obtains an object of IFSQ,
since the tensor product of stochastic matrices is stochastic. In general,
the tensor product does not yield a product in the category IFSQ

(compare [15, §5.2]).
Now let Q be a finite left quasigroup. Recall that for each subquasi-

group P of Q, the homogeneous space P\Q is a Q-IFS with the action
map specified by (3.2). In particular, the regular space is ∅\Q. A
Q-IFS is said to be a basic Q-set if it is a homomorphic image of a
homogeneous space P\Q for a subquasigroup P of Q — compare Defi-
nition 3.2(a). Each basic Q-set is irreducible in the sense that it has no
proper, non-empty subobjects [14, Cor. 8.2]. A Q-IFS is said to be a
(finite) Q-set if it is a finite sum of basic Q-sets. A finite Q-set (Z,Q)
is said to be a Q-subset or sub-Q-set of a finite Q-set (Y,Q) if (Z,Q) is
a sub-Q-IFS of (Y,Q) — compare Definition 3.2(b). The category Q

fin
of finite Q-sets is the full subcategory of IFSQ induced on the class of
finite Q-sets. (Note that the alternative definitions here agree with the
earlier definitions of [14, 15] — compare [15, Th. 5.4]. Furthermore, if
Q is associative, the present concept of a finite Q-set agrees with the
concept as usually understood for groups [14, Cor. 9.5].)

4. Burnside orders

Let Q be a finite left quasigroup. For a finite Q-set X, let [X] denote
its isomorphism type within the category Q

fin
. Let B be the set of so-

called basic types, the isomorphism types of basic Q-sets. The set B
is finite [14, Cor. 9.4]. The regular type is [∅\Q]. Let J be the full
subcategory of Q

fin
induced on the class of basic Q-sets. Define a new

category J̃ on the object class J
0
of J by setting

∣∣J̃(X,Y )
∣∣ = {

1 if Q
fin
(X,Y ) ̸= ∅;

0 otherwise.

Then J̃ is a pre-ordered class. It induces an order structure (B,⊑) on
the set B (compare [16, I, Ex. 1.3H]) given explicitly by

(4.1) [X] ⊑ [Y ] ⇔ Q
fin
(X, Y ) ̸= ∅ .

(Antisymmetry follows from the fact that basic Q-sets are irreducible.)

Definition 4.1. The partially ordered set (B,⊑) of (4.1) is called the
Burnside order of the finite left quasigroup Q.

Example 4.2. Let Q be a finite group. By Proposition 3.3, the left-
quasigroup actions of Q coincide with the (right) group actions of Q.
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The set B of basic types [P\Q] may be identified as the set of conjugacy
classes PQ of subgroups P of Q. Then the Burnside order of Q is given
by

PQ
1 ⊑ PQ

2 ⇔ ∃ q ∈ Q . P q
1 ⊆ P2 ,

i.e., by containment of subgroups within the conjugacy classes. The
partial order ⊑ is written as ⊆Q in the notation of [3].

Example 4.3. Let Q be the quandle of the trefoil knot [5, p.81], [7,
§2]. This is the (left) quasigroup given by the field of order 3 under the
multiplication operation x � y = −x − y. The automorphism group
of Q is the full symmetric group on the set Q, which of course acts
doubly-transitively on Q. Let X3 be the regular space, and let X1 be
the trivial space Q\Q. There are three 2-element homogeneous spaces:

X2 = {0}\Q =
{
{0}, {1, 2}

}
;

X ′
2 = {1}\Q =

{
{1}, {2, 0}

}
;

X ′′
2 = {2}\Q =

{
{2}, {0, 1}

}
.

For example, X2 consists of the two orbits {0} and {±1} of the relative
left multiplication group of {0} in Q, the group consisting of the two
scalar multiplications ±1. The structure of the remaining two spaces
X ′

2, X
′′
2 follows by applying automorphisms of Q to X2. Note the right

actions

(4.2) RX2(0) =

[
1 0
0 1

]
and RX2(2) = RX′

2
(0) = RX′′

2
(1) =

[
0 1
1
2

1
2

]
— compare [15, §4.6, Ex. 3].

The set B of basic types is {[X1], [X2], [X
′
2], [X

′′
2 ], [X3]}. Certainly,

homogeneous spaces with differing cardinalities are not isomorphic. To
confirm the mutual non-isomorphism of the three homogenous spaces of
cardinality 2, it suffices (by the double transitivity of the automorphism
group of Q) to observe that there is no isomorphism ϕ : X2 → X ′

2. If
there were such an isomorphism, its incidence matrix F would be a
permutation matrix, with RX2(0)F = F . On the other hand, it is
apparent from (4.2) that FRX′

2
(0) is not a permutation matrix. Thus

the intertwining relation (3.5) is broken, and there is no isomorphism.
The singleton space X1 is the codomain for a homomorphism from

each homogeneous space. But there is no homomorphism from the
regular space X3 to any of the doubleton spaces X2, X

′
2, or X

′′
2 . Indeed,

the regular space is crisp [15, Defn. 5.3], in the sense that its action
matrices are 0-1-matrices. On the other hand, the doubleton spaces
are not crisp, as exhibited by the latter set of action matrices in (4.2).
Bearing in mind the irreducibility of the doubletons, and the fact that
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each homomorphic image of a crisp space is crisp [15, Prop. 5.4], it
follows that Q

fin
(X3, X) is empty whenever X ∈ {X2, X

′
2, X

′′
2 }. Thus

the Burnside order of Q contains an antichain {[X2], [X
′
2], [X

′′
2 ], [X3]}

of elements, each dominated by [X1].

5. Burnside algebras

Let Q be a non-empty, finite left quasigroup. Using the theory of
coalgebras [14, Prop. 7.3(c)], and a more special result [14, Cor. 11.4],
it may be shown that the category Q

fin
of finite Q-sets has finite sums

and products. The sum and product of finite Q-sets X and Y will
be denoted respectively by X + Y and X × Y . Note that X + Y
is just a disjoint union. If Q is a group, then X × Y is the usual
direct or Cartesian product, but in general, the form of X × Y may be
more subtle. (Compare Section 6 below for the case of projection left
quasigroups.)

Let A+(Q) denote the set of isomorphism types of finiteQ-sets within
the category Q

fin
. It is often convenient to consider each basic type b

of Q as represented by a specified irreducible Q-set Hb. Now

(5.1) ∀ [X] ∈ A+(Q), ∀ b ∈ B, ∃ nb ∈ N. [X] =
∑
b∈B

nbb.

An inner product is defined on A+(Q) by

(5.2)
⟨∑

b∈B

mbb,
∑
b∈B

nbb
⟩
=

∑
b∈B

mbnb.

With respect to this inner product, the set of basic types is orthonor-
mal. The equation of (5.1) may then be rewritten as

(5.3) [X] =
∑
b∈B

⟨b, [X]⟩b.

The proof of the following theorem relies on standard properties of
sums and products in categories, and the definition of the category
Q

fin
(compare [15, Th. 5.5]).

Theorem 5.1. Let Q be a finite left quasigroup.

(a) The set A+(Q) forms a commutative unital semiring, with zero
[∅] and unit [{1}], under the sum [X] + [Y ] = [X + Y ] and the
product [X] · [Y ] = [X × Y ].

(b) The N-semimodule A+(Q) is free over the basis B.

The mark concept for left quasigroups in the following definition is
a natural extension of Burnside’s original [4, §180].
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Definition 5.2. Let Q be a finite left quasigroup, and let X be a
finite Q-set. For each basic Q-set type b = [Hb], the mark of b in X or
x = [X] is defined to be the cardinality

(5.4) Zxb =
∣∣Q

fin
(Hb, X)

∣∣
of the set of Q-homomorphisms from Hb to X. The mark matrix or
Z-matrix Z or ZQ of Q is the |B| × |B| matrix [Zbc] for b and c in B.

The following key proposition has an easy proof making use of the
Burnside order. Earlier proofs ([14, Prop. 11.6], [15, Prop. 5.6]) were
less natural.

Proposition 5.3. With notation as in Definition 5.2:

(a) The set B may be ordered so that Z is triangular.
(b) The Z-matrix is invertible over Q.

Proof. (a): Extend the order (B,⊑) to a linear order (compare [2], [16,
O, Prop. 3.5.4(a)]). With this linear ordering of B for its rows and
columns, the Z-matrix becomes upper triangular.
(b): For b = [H] ∈ B, the identity map 1H lies in Q

fin
(H,H), so the

diagonal entries of the triangular matrix Z are all non-zero. �
Theorem 5.4. [14, Th. 11.7] Let Q be a finite left quasigroup, with set
B of basic types of Q-set. Then the mark map

(5.5) (A+(Q),+, ·) → QB;x 7→ (b 7→ Zxb) ,

with pointwise structure on its codomain, is an embedding of semirings.

Corollary 5.5. Define A(Q) as the Q-vector space with basis B. Note
that A(Q) contains the free N-semimodule A+(Q) of Theorem 5.1(b)
as a subreduct. Then A(Q) carries a Q-algebra structure (A(Q),+, ·)
such that:

(a) The semiring (A+(Q),+, ·) is identified as a subreduct of the
Q-algebra (A(Q),+, ·);

(b) The mark map (5.5) extends to a Q-algebra isomorphism

(5.6) (A(Q),+, ·) → QB;
∑
a∈B

raa 7→
(
b 7→

∑
a∈B

raZab

)
.

Definition 5.6. For a finite left quasigroup Q, the (rational) Burnside
algebra is defined to be the Q-algebra (A(Q),+, ·) of Corollary 5.5. The
isomorphism (5.6) is known as the mark isomorphism.

Example 5.7. Let Q be a finite group. Then the Burnside algebra
of Q in the left quasigroup sense of Definition 5.6 coincides with the
Burnside algebra of Q in the classical group sense (see [3], for instance).
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6. Projections

For a positive integer n, consider an n-element set Pn = {x1, . . . , xn}
equipped with the right projection Pn × Pn → Pn; (x0, x1) 7→ x1 as
the multiplication and left division of a left quasigroup structure Pn,
a projection (left) quasigroup in the sense of Section 2. As noted in
that section, each subset P of Pn forms a subquasigroup, and since
LMltPn(P ) = {1}, the homogeneous space P\Pn is the regular space
Pn or ∅\Pn. Thus each Pn-set is a sum of homomorphic images of the
regular space.

Consider the lattice Πn of equivalence relations on the set Pn, with
inclusion order induced from the power set of Pn

2, the set of all binary
relations on Pn. For ρ ∈ Πn, consider the set

Yρ = {xρ | x ∈ Pn}
of ρ-classes xρ = {x′ | (x, x′) ∈ ρ} for x ∈ Pn. For q ∈ Pn, define an
action RYρ(q) on Yρ by

(6.1) yRYρ(q) = qρ

for each y ∈ Yρ. Note that if P̂n is the diagonal {(x, x) | x ∈ Pn}, the
equality relation on Pn, then YP̂n

is the regular space Pn.

Proposition 6.1. Up to isomorphism, the basic Pn-sets are precisely
the sets Yρ for ρ ∈ Πn.

Proof. For ρ ∈ Πn, consider the natural projection ϕ : Pn → Yρ;x 7→ xρ.
Then for x, q ∈ Pn, the action (6.1) gives xϕRYρ(q) = qρ = xRPn(q)ϕ,
so ϕ is a surjective Pn-homomorphism and Yρ is an irreducible Pn-set.

Conversely, suppose that Y is a basic Pn-set, with surjective Pn-
homomorphism ϕ : Pn → Y . Suppose ρ = kerϕ. Then without loss
of generality (using the First Isomorphism Theorem for sets [16, O,
Th. 3.3.1]), one may take the underlying set Y to be Yρ, with ϕ as the
natural projection by ρ. Now suppose that xρ, for some x ∈ Pn, is
an element of Y . The intertwining condition that ϕ : Pn → Y is a Pn-
homomorphism yields xρRY (q) = xϕRY (q) = xRPn(q)ϕ = qϕ = qρ, in
agreement with (6.1). Thus the Pn-sets Y and Yρ are isomorphic. �
Corollary 6.2. The set of basic Pn-types is Πn, with [Yρ] = ρ for
ρ ∈ Πn.

Lemma 6.3. For ρ ⊆ σ in Πn, the function

(6.2) ϕρσ : Yρ → Yσ; x
ρ 7→ xσ

is well-defined.

It is convenient to refer to the function (6.2) as a coarsening.
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Lemma 6.4. Suppose ρ, σ ∈ Πn.

(a) There is a Pn-homomorphism ϕ : Yρ → Yσ if and only if ρ ⊆ σ.
(b) If ρ ⊆ σ, the Pn-homomorphism ϕ : Yρ → Yσ is unique.

Proof. If ρ ⊆ σ, the action (6.1) gives

xρϕρσRYσ(q) = qσ = xρRYρ(q)ϕρσ ,

for x, q ∈ Pn, so the coarsening ϕρσ is a Pn-homomorphism.
Conversely, suppose there is a Pn-homomorphism ϕ : Yρ → Yσ. Let

(q1, q2) ∈ ρ and y ∈ Yρ. The action (6.1) gives

qσ1 = yϕRYσ(q1) = yRYρ(q1)ϕ = qρ1ϕ(6.3)

= qρ2ϕ = yRYρ(q2)ϕ = yϕRYσ(q2) = qσ2 ,

so (q1, q2) ∈ σ. Thus ρ ⊆ σ, as required to complete the proof of (a).
Line (6.3) shows that ϕ = ϕρσ, as required for (b). �

Lemma 6.4 shows that Pn
fin
(Yρ, Yσ) is {ϕρσ} if ρ ⊆ σ, and empty

otherwise. Together with Corollary 6.2, it may be summarized as fol-
lows.

Theorem 6.5. Let n be a positive integer.

(a) The Burnside order of the projection left quasigroup Pn is the
partition lattice Πn.

(b) The mark matrix of Pn is the adjacency matrix of the contain-
ment relation on Πn. In other words, for ρ, σ ∈ Πn, one has

Zσρ =

{
1 if σ ⊇ ρ;

0 otherwise,

so Zσρ is the truth value [[ρ ⊆ σ]].

Note that the statement of Theorem 6.5(b) is strictly stronger than
the content of part (a). It identifies the mark matrix of Pn as the dual of
the zeta function in the incidence algebra of the partition lattice Πn [9],
[16, Ex. III.1J]. Theorem 6.5(a) alone yields the following consequence
of a well-known result of Pudlák-Tůma [8].

Corollary 6.6. Each finite lattice embeds as a sublattice of the Burn-
side order of a left quasigroup.

Corollary 6.7. For Q = Pn, the mark isomorphism takes the form

(A(Pn),+, ·) → QΠn ;
∑
σ∈Πn

rσσ 7→
(
ρ 7→

∑
ρ⊆σ

rσ

)
.
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Proof. Consider an element
∑

σ∈Πn
rσσ of A(Pn). Its image under the

mark isomorphism sends an element ρ of Πn to
∑

σ∈Πn
rσZσρ, which

reduces to
∑

ρ⊆σ rσ by Theorem 6.5(b). �
Set-theoretic intersection provides a semilattice structure (Πn,∩) on

the set of basic types. Bilinearity extends this product to the entire
Burnside algebra A(Pn).

Theorem 6.8. Let n be a positive integer. Then the product in the
Burnside algebra A(Pn) of the projection left quasigroup Pn is given by
the bilinear extension of set-theoretic intersection.

Proof. Consider partitions ρ, σ, and τ . By Corollary 6.7, the respective
images of σ and τ under the mark isomorphism send ρ to the truth
values [[ρ ⊆ σ]] and [[ρ ⊆ τ ]]. Thus by Corollary 5.5, the image of the
Burnside algebra product σ · τ sends ρ to

[[ρ ⊆ σ]] · [[ρ ⊆ τ ]] = [[ρ ⊆ (σ ∩ τ)]] .

Since the image of the intersection σ ∩ τ has the same effect on ρ, it
follows that σ · τ = σ ∩ τ . �
Corollary 6.9. The set Πn of basic types forms a subsemigroup of the
Burnside algebra that coincides with the partition semilattice (Πn,∩).

7. Restricted tensor products

Let Q be a finite left quasigroup. Suppose that X or (X,Q) and Y
or (Y,Q) are finite Q-sets. Then the restricted tensor product X⊗̂Y is
the largest (finite) Q-set contained in the tensor product (X ⊗ Y,Q)
[15, p.124]. The Burnside algebra A(Q) is closed under the restricted
tensor product [15, Theorem 5.5, 1(b)].

Theorem 7.1. Let n be a positive integer. Then the restricted tensor
product in the Burnside algebra A(Pn) of the projection left quasigroup
Pn coincides with the product.

Proof. Let ρ and σ be elements of Πn. By [15, Cor. 5.4],

ρ⊗̂σ ⊆ ρ · σ = ρ ∩ σ .

Since Yρ∩σ is irreducible, it suffices to show that the tensor product
Pn-IFS Yρ ⊗ Yσ contains a Pn-subset isomorphic to Yρ∩σ. The First
Isomorphism Theorem for sets applied to the function

θ : Q → Qρ ×Qσ; x 7→ (xρ, xσ)

yields an isomorphism b : Qker θ → Qθ. For elements s, t of Q, one has

(s, t) ∈ ker θ ⇔ (sρ, sσ) = (tρ, tσ) ⇔ (s, t) ∈ ρ ∩ σ ,
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so b : Qρ∩σ → Qθ; xρ∩σ 7→ (xρ, xσ). Now if x and q are elements
of Q, then xρ∩σRYρ∩σ(q)b = qρ∩σb = (qρ, qσ) =

(
xρRYρ(q), x

σRYσ(q)
)
=

(xρ, xσ)RYρ⊗Yσ(q) = xρ∩σbRYρ⊗Yσ(q) , so b is the desired Pn-isomorphism
from Yρ∩σ to the Pn-subset Q

θ of Yρ ⊗ Yσ. �
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