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Abstract. Norton and Stein associated a number with each idem-
potent quasigroup or diagonalized Latin square of given finite or-
der n, showing that it is congruent mod 2 to the triangular number
T (n). In this paper, we use a graph-theoretic approach to extend
their invariant to an arbitrary finite quasigroup. We call it the cy-
cle number, and identify it as the number of connected components
in a certain graph, the cycle graph. The congruence obtained by
Norton and Stein extends to the general case, giving a simplified
proof (with topology replacing case analysis) of the well-known
congruence restriction on the possible orders of general Schroeder
quasigroups. Cycle numbers correlate nicely with algebraic prop-
erties of quasigroups. Certain well-known classes of quasigroups,
such as Schroeder quasigroups and commutative Moufang loops,
are shown to maximize the cycle number among all quasigroups
belonging to a more general class.

1. Introduction

In a remarkable paper published in 1956, D.A. Norton and S.K. Stein
defined a certain numerical invariant of each finite idempotent quasi-
group or diagonalized Latin square [8]. Although they did not give a
name to this invariant, it will be convenient to refer to it as the cycle
number. By associating an oriented surface or 2-dimensional complex
with each idempotent quasigroup of given finite order n, they showed
that the cycle number of such a quasigroup is congruent modulo 2 to
the triangular number T (n) = n(n + 1)/2. Recently, the results of
Norton and Stein were extended to arbitrary finite quasigroups, and
used to show that certain permutation cycle types cannot be realized
as quasigroup automorphisms [6].

The aim of the current paper is to present an alternative, graph-
theoretic approach to the specification of the cycle number and 2-
complex associated with a finite quasigroup. In Section 2, we begin
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with the free product G of three cyclic groups of order 2 that are gen-
erated by respective involutions t1, t2, and t3. The group G acts on
the disjoint union (2.1) of three copies of the multiplication table of an
arbitrary quasigroup Q. The undirected Cayley graph of this action
with respect to the involutory generating set {t1, t2, t3} is denoted by
ΓQ. Certain so-called stabilizing edges (2.5) are then removed from ΓQ

to yield a graph CQ known as the cycle graph of the quasigroup Q.
The constructions of ΓQ and CQ yield functors from the category of
quasigroup homomorphisms to the category of graph homomorphisms
(Theorem 2.6).

For a finite quasigroup Q, the cycle number is defined as the number
σ(CQ) of connected components in the cycle graph CQ (Definition 2.1).
Section 3 analyzes the structure of the cycle graph in the general case,
and shows that its connected components are either cycles or doubly
infinite paths. In Section 4, bounds for the cycle number of a finite
quasigroup are given in terms of its algebraic properties. The cycle
number of a quasigroup Q of finite order n is bounded above by n2,
and this bound is attained precisely by the Schroeder quasigroups, i.e.,
quasigroups satisfying the identity xy·yx = x (Theorem 4.1). The cycle
number of a commutative quasigroup Q of finite order n is bounded
below by n2/2 (Proposition 4.3). The cycle number of a quasigroup
Q of order n is equal to the triangular number T (n) if Q is totally
symmetric (Proposition 4.6), or if Q is a commutative diassociative
loop (Proposition 4.7). Indeed, commutative diassociative loops of a
given finite order are characterized among all diassociative loops of that
order by maximization of the cycle number (Theorem 4.9). Restrictions
of the theorem similarly characterize abelian groups among all groups,
or commutative Moufang loops among all Moufang loops.

The remainder of the paper constructs a 2-complex, associated with
a finite quasigroup, that is dual to the complex previously studied by
Norton, Stein, and the authors [6, 8]. This dual complex turns out
to be somewhat easier to handle, allowing a more direct labeling of
its elements. Using the new complex, we recover the result of Norton
and Stein for finite idempotent quasigroups, and extended to general
finite quasigroups by the authors, that the cycle number of a quasi-
group of order n is congruent mod 2 to the triangular number T (n)
(Theorem 7.3). A sample application of this theorem gives a simple
proof that the order of a general finite Schroeder quasigroup must be
congruent to 0 or 1 modulo 4 (Corollary 7.5). Since this result was pre-
viously obtained by a detailed case analysis, we believe that our proof
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may serve as a prototype for the use of topological techniques in com-
binatorics, either as a substitute for case analysis, or for the derivation
of new results.

For concepts and conventions that are not otherwise explicitly given
in this paper, see [10, 11].

2. Marked triples

Consider the free product

G = ⟨t1, t2, t3 | t21 = t22 = t23 = 1⟩
of three copies of the group of order two. The group G acts on the set
3 = {1, 2, 3} by the transpositions

t1 = (2 3) , t2 = (3 1) , t3 = (1 2) .

Let (Q, ·, /, \) be a quasigroup. Define the marked multiplication table

(2.1) MQ = {(x, y, z, i) ∈ Q3 × 3 | xy = z} .
The elements of MQ are called the marked triples of Q. It will often
prove convenient to denote the respective marked triples (x, y, z, 1),
(x, y, z, 2), and (x, y, z, 3) by xyz, xyz, and xyz. In a marked triple
(x1, x2, x3, i), the element xi is called the marked element.

An action of G on MQ is defined by

(x, y, z, i)t1 = (y/z, z, y, it1) ;(2.2)

(x, y, z, i)t2 = (z, z\x, x, it2) ;(2.3)

(x, y, z, i)t3 = (y, x, y · x, it3) .(2.4)

Let ΓQ denote the undirected Cayley graph of this action. (In actual
figures, it suffices to label edges with 1, 2, 3 rather than t1, t2, t3.)

We now define a subgraph of ΓQ on the vertex set MQ, known as the
cycle graph CQ of the quasigroup Q. An edge of ΓQ labeled ti between
marked triples of the form (x, y, z, i) is said to be a stabilizing edge:

(2.5) ( , , , i) i ( , , , i)

The subgraph CQ of ΓQ is obtained by removing all the stabilizing
edges. The fundamental definition is as follows.

Definition 2.1. Let Q be a (possibly infinite) quasigroup.

(a) For an element q of Q, a cycle of q is defined as a connected
component of CQ containing a marked triple in which q is the
marked element. We let Cq denote the union of all cycles of q.

(b) The cycle number of Q is the (possibly infinite) number σ(CQ)
of connected components in the cycle graph CQ.
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Remark 2.2. For finite Q, Proposition 3.1(c) below will show that
the connected components of CQ are actual cycles. If Q is infinite, the
“cycles” of Definition 2.1 may be infinite paths (compare Corollary 4.5).
Nevertheless, the term “cycle” is retained here to correlate with the
usage of Norton and Stein [9].

Example 2.3. Suppose that e is an idempotent element of Q. Then
the fragment

eee
1

�
�
�
�

3

eee

A
A
A
A

2

eee

of ΓQ is a cycle of e. Such a cycle is described as an idempotent cycle.

Example 2.4. Suppose that ef = f and fe = e in Q. In this case, the
pair {e, f} is said to form a left couplet in Q. (As a mnemonic, note
that e is a left unit for f , and vice versa.) The fragment

fee
1

�
�
�
�

3

eff

A
A
A
A

2

fee

of ΓQ is a cycle of e, a so-called left-couplet cycle. Right couplets, and
right-couplet cycles, are defined dually.

Proposition 2.5. A quasigroup homomorphism θ : Q → Q′ induces
graph homomorphisms Γθ : ΓQ → ΓQ′ and Cθ : CQ → CQ′.

Proof. The quasigroup homomorphism θ : Q → Q′ induces a map

(2.6) Mθ : MQ → MQ′ ; (x, y, z, i) 7→ (xθ, yθ, zθ, i) .

In order to establish the proposition, we will show that the map Mθ is
G-equivariant. Consider elements x, y, z of Q. By (2.2), one has

(z/y,y, z, i)t1Mθ = (y/z, z, y, it1)Mθ = ((y/z)θ, zθ, yθ, it1)

= (yθ/zθ, zθ, yθ, it1) = (zθ/yθ, yθ, zθ, i)t1

= ((z/y)θ, yθ, zθ, i)t1 = (z/y, y, z, i)Mθt1 .
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By (2.3), one has

(x,x\z, z, i)t2Mθ = (z, z\x, x, it2)Mθ = (zθ, (z\x)θ, xθ, it2)
= (zθ, zθ\xθ, xθ, it2) = (xθ, xθ\zθ, zθ, i)t2
= (xθ, (x\z)θ, zθ, i)t2 = (x, x\z, z, i)Mθt2 .

Finally, by (2.4),

(x,y, xy, i)t3Mθ = (y, x, yx, it3)Mθ = (yθ, xθ, (yx)θ, it3)

= (yθ, xθ, yθ · xθ, it3) = (xθ, yθ, xθ · yθ, i)t3
= (xθ, yθ, (xy)θ, i)t3 = (x, y, xy, i)Mθt3 .

The graph homomorphism Γθ acts by sending an edge

v i vti

of ΓQ to the edge

vMθ
i vtiMθ = vMθti

of ΓQ′ (for 1 ≤ i ≤ 3), while Cθ is just restricted from Γθ. �
Given the form of the induced map (2.6), and the definitions of Γθ

and Cθ in the proof of Proposition 2.5, it is straightforward to conclude:

Theorem 2.6. The respective assignments of the graph homomor-
phisms Γθ : ΓQ → ΓQ′ and Cθ : CQ → CQ′ to a quasigroup homomor-
phism θ : Q → Q′ yield functors Γ : Q → Graph and C : Q → Graph
from the category Q of quasigroup homomorphisms to the category
Graph of graph homomorphisms .

3. Structure of the cycle graph

Proposition 3.1. Let Q be a quasigroup.

(a) The cycle graph of Q is a disjoint union

CQ =
∑
q∈Q

Cq

of the subgraphs Cq.
(b) Each connected component of CQ is composed of fragments of

the form

(3.1) ( , , , 2) 1 ( , , , 3) 2 ( , , , 1) 3 ( , , , 2)

Now suppose that Q has finite order n.

(c) For each element q of Q, the graph Cq is a disjoint union of
nontrivial cycles, the cycles of q in the sense of §2. Thus the
graph CQ is planar.
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(d) The length of each cycle of CQ is a multiple of 3.
(e) Each cycle of CQ is oriented by defining the positive direction

to be from left to right along each fragment (3.1)
(f) For each element q of Q, the graph Cq has 3n vertices and 3n

edges.

Proof. (a): The subgraph Cq is induced on the set of marked triples
in which the marked element is q. Note that in ΓQ, the only edges
that might connect marked triples with different marked elements are
the stabilizing edges (2.5) — compare (2.2)–(2.4). These edges are
excluded from CQ.

(b): Since the stabilizing edges (2.5) are excluded from CQ, just the
fragments (3.1) remain.

(c): By (b), each vertex of the finite graph Cq has degree 2.

(d) and (e) follow from (b).

(f): For each of the three possible positions of q as the marked element
of a marked triple, there is a unique such triple for each of the n
elements of Q. Thus Cq has 3n vertices. Then by (c), Cq has as many
edges as vertices. �

Example 3.2. According to Proposition 3.1(e), the cycles displayed
in Examples 2.3 and 2.4 are oriented in the counterclockwise direction.

Remark 3.3. For an element q of a quasigroup Q, let ΓQ,q denote the
subgraph of ΓQ induced on the vertex set of marked triples with q as
the marked element. It may happen that a single connected component
of ΓQ,q breaks up into distinct connected components of Cq. This is the
case, for example, with the element 0 of the quasigroup Q displayed by
the following multiplication table:

Q 0 1 2 3

0 0 3 1 2

1 1 2 3 0

2 2 1 0 3

3 3 0 2 1

The stabilizing edge

(3, 1, 0, 3) 3 (1, 3, 0, 3)

in ΓQ,0 connects marked triples lying on distinct cycles in C0.
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4. Cycle numbers

This section examines bounds on the cycle number for certain classes
of finite quasigroups. We begin with the case of general quasigroups.
Recall that a quasigroup satisfying the identity xy ·yx = x is described
as a Schroeder quasigroup [2, §7.2] [4, p.34]. (The identity xy · yx = x
itself is known as Schroeder’s second law [4, (2.26)].)

Theorem 4.1. Let Q be a quasigroup of finite order n.

(a) The cycle number of Q satisfies the inequality

(4.1) σ(CQ) ≤ n2 .

(b) Equality obtains in (4.1) iff Q is a Schroeder quasigroup.

Proof. By Proposition 3.1(d), the length of each cycle is at least 3.
Since there are 3n2 marked triples altogether, the bound (4.1) follows.
Note that the bound is attained iff each cycle has length 3.

Now consider elements x and y of Q. The cycle in Cx with the
marked triple (x, y, xy, 1) includes the following fragment:

(y, x, yx, 2)

3

(x, y, xy, 1)

1
(x/yx, yx, x, 3)

2 (xy, xy\x, x, 3)

The cycle closes to a cycle of length 3 iff the equivalent conditions

(a) xy = x/yx , (b) xy · yx = x , and (c) yx = xy\x
obtain. In particular, each cycle has length 3 iff (b) holds identically
in Q, i.e., iff Q is a Schroeder quasigroup. �

A quaternion construction shows that the bound of Theorem 4.1 is
attainable whenever n is a power of 81:

Proposition 4.2. Suppose n = 34k for some natural number k. Then
there is a quasigroup Q of order n such that the bound (4.1) is attained.

Proof. Let A be an elementary abelian group of order 3k. Consider the
automorphisms

i =


0 1 0 0
−1 0 0 0
0 0 0 −1
0 0 1 0

 and j =


0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0
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of A4 — compare [11, p.157]. Define a quasigroup multiplication

x · y = xi+ yj

on A4 — compare [10, (2.15)]. Since ij = −ji and i2 + j2 = −2 ≡ 1
mod 3, we have

xy · yx = (xi+ yj)i+ (yi+ xj)j = x(i2 + j2) + y(ji+ ij) = x

for x and y in Q = (A4, ·), so σ(CQ) = n2 by Theorem 4.1(b). �

For a given finite order n, R.D. Baker demonstrated the co-existence
of idempotent Schroeder quasigroups and triple tournaments of that
order [1]. As a contrast to the quaternion construction presented in
Proposition 4.2, there are purely combinatorial constructions, primarily
due to C.C. Lindner et al., of Schroeder quasigroups for almost all
finite orders n congruent to 0 or 1 modulo 4 [7], compare [2, §7.2] [4,
II.3.5, 7.3]. Corollary 7.5 below shows the necessity of the congruence
restriction.

Although this section is mainly concerned with maximization of the
cycle number, as in Theorem 4.1, it is worth pointing out that a result
of Norton and Stein yields a lower bound for the cycle number of a
finite commutative quasigroup.

Proposition 4.3. Let Q be a quasigroup of finite order n. Then

σ(CQ) ≥
1

2
n2

if Q is commutative.

Proof. IfQ is commutative, then each cycle has length 3 or 6 [9, Th.6.2].
(Note that we measure the length of a cycle in the graph-theory sense,
as the number of edges, while the length according to Norton and Stein
is one third as large.) Thus the number of cycles is no less than one
sixth the total number 3n2 of vertices in CQ. �

A direct analysis of the cycles may be carried out for semisymmetric
quasigroups, defined by the identity (xy)x = y or R(x)−1 = L(x) [10,
1.4]. For a given integer r, note that

x · yR(x)r = yR(x)rL(x) = yR(x)rR(x)−1 = yR(x)r−1

and

x
/ (

yR(x)r+1
)
= xR

(
yR(x)r+1

)−1
= xL

(
yR(x)r+1

)
= yR(x)r+2

within a semisymmetric quasigroup. Inductions on r and −r then yield
the following result.
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Proposition 4.4. Let Q be a (possibly infinite) semisymmetric quasi-
group. Let x and y be elements of Q. Then the cycle of x that contains
the marked triple

(x, y, xy, 1) =
(
x, yR(x)0, yR(x)−1, 1

)
is constructed from fragments of the form(

x, yR(x)r, yR(x)r−1, 1
) 3 (

yR(x)r, x, yR(x)r+1, 2
) 1

1 (
yR(x)r+2, yR(x)r+1, x, 3

) 2 (
x, yR(x)r+3, yR(x)r+2, 1

)
for an integer r.

Corollary 4.5. Let x and y be distinct generators of a free semisym-
metric quasigroup. Then the “cycle” that contains the marked triple
(x, y, xy, 1) is a doubly infinite path.

We now exhibit two classes of quasigroups, namely totally symmetric
quasigroups and commutative diassociative loops, in which each mem-
ber Q of finite order n has the triangular number T (n) as its cycle num-
ber. The respective enumerations are similar in general pattern, but
differ in the specific details. First recall that a quasigroup is totally sym-
metric if it satisfies the identities xy = yx = x/y = y/x = x\y = y\x.

Proposition 4.6. Let Q be a totally symmetric quasigroup of finite
order n. Then the cycle number σ(CQ) of Q is the triangular number
T (n).

Proof. Since Q has n elements y, there are n pairs (x, y) in Q2 that
satisfy the equivalent conditions

(a) x = y · y , (b) x = y/y , (c) xy = y , and (d) yx = y .

For each such pair, there is a 3-cycle

yxy
1

�
�
�
�

3

xyy

A
A
A
A

2

yyx

in Cx. For the remaining n2 − n pairs (x, y) in Q2, there is a 6-cycle
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yxz
1

3

xyz
2

yzx

zyx

2

1

xzy

zxy

3

with xy = z ̸= y. Since the same cycle also corresponds to the pair
(x, z) = (x, xy), there will be (n2 − n)/2 such 6-cycles altogether. The
cycle number σ(CQ) is n+ (n2 − n)/2 = (n2 + n)/2 = T (n). �

A loop is said to be diassociative if the subloop generated by each
pair of elements is associative (and thus forms a group). The study of
cycles in a diassociative loop may be conducted as if the diassociative
loop were a group. For example, in Proposition 4.8 below, we use the
conjugation notations xy = y−1xy and x−y = y−1x−1y for elements x
and y of a diassociative loop.

Proposition 4.7. Suppose that Q is a commutative diassociative loop
of finite order n. Then the cycle number σ(CQ) of Q is the triangular
number T (n).

Proof. Since Q has n elements y, there are n pairs (x, y) in Q2 with
x = y−2. For each such pair, there is a 3-cycle

yxy−1

1

�
�
�
�

3

xyy−1

A
A
A
A

2

y−1y−1x

in Cx. For the other n2 − n pairs (x, y) in Q2, there is a 6-cycle

yxz
1

3

xyz
2

y−1zx

zy−1x

2

1

xz−1y−1

z−1xy−1

3

in Cx (note that z = xy ̸= y−2y = y−1). Since the same cycle also
corresponds to the pair (x, z−1) = (x, (xy)−1), there will be (n2 − n)/2
such 6-cycles altogether. Thus the cycle number σ(CQ) is the total
n+ (n2 − n)/2 = (n2 + n)/2 = T (n). �
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The following result describes the cycles of a given element of a
general diassociative loop.

Proposition 4.8. Suppose that x and y are elements of a (possibly
infinite) diassociative loop Q. Then the cycle of x that contains the
marked triple (x, y, xy, 1) consists of fragments of the form

(
x, yx

r

, xyx
r

, 1
) 3 (

yx
r

, x, yx
r

x, 2
) 1 (

y−xr

, yx
r

x, x, 3
) 2(

x, x−1y−xr

, y−xr

, 1
) 3

(
x−1y−xr

, x, y−xr+1

, 2
)

1(
xyx

r+1

, y−xr+1

, x, 3
)

2
(
x, yx

r+1

, xyx
r+1

, 1
)

for an integer r.

Proof. Use induction on r and −r. �
Theorem 4.9. Let Q be a diassociative loop of finite order n.

(a) The cycle number of Q satisfies the inequality

(4.2) σ(CQ) ≤ T (n) .

(b) Equality obtains in (4.2) if and only if Q is commutative.

Proof. First, note that if Q is commutative, then equality holds in (4.2)
by Proposition 4.7.

Now consider the general case. Proposition 3.1(b) shows that each
cycle of Q contains a triple of the form ( , , , 1). By Proposition 4.8
(with r = 0), there is a 3-cycle including (x, y, xy, 1) for elements x
and y of Q if and only if y = x−1y−1 or x = y−2. Since Q2 contains
only n pairs (x, y) with x = y−2, there are just n such cycles. These
cycles comprise 3n of the total number 3n2 of marked triples. By
Proposition 3.1(d), the length of each remaining cycle is at least 6.
Thus

(4.3) σ(CQ) ≤ n+
3n2 − 3n

6
= T (n) ,

proving (a).
Finally, suppose that equality holds in (4.2). Then by (4.3), each

cycle is of length 3 or 6. Let (x, y) be a pair of elements of Q. There
are two cases to consider:
(a) If the marked triple (x, y, xy, 1) lies in a cycle of length 3, then
x = y−2 and xy = yx in this case;
(b) If the marked triple (x, y, xy, 1) lies in a cycle of length 6, setting
r = 0 in Proposition 4.8 shows that y = x−1yx, so again xy = yx. �
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Let n be a given finite order. Theorem 4.9 characterizes the abelian
groups among all groups of order n by maximization of the cycle num-
ber, at T (n). Similarly, recalling Moufang’s Theorem that Moufang
loops are diassociative [3, VII.4], Theorem 4.9 serves to characterize
commutative Moufang loops among all Moufang loops of order n by
maximization of the cycle number, again at T (n).

5. The unmarked multiplication table

The unmarked multiplication table of a quasigroup Q is defined as

K0
Q = {(x, y, z) ∈ Q3 | xy = z} .

The unmarking projection is defined as

MQ → K0
Q; (x, y, z, i) 7→ (x, y, z) .

As for the marked multiplication table, it is sometimes convenient to
write an element (x, y, z) of the unmarked table simply as xyz.

From now on, suppose that Q is a quasigroup of finite order n. In this
case, |K0

Q| = n2. Consider a cycle of CQ which is not an idempotent
cycle in the sense of Example 2.3. Its vertices are certain marked
triples. Unmarking these vertices induces a quotient graph with loops.
Deletion of the loops leaves a cycle, known as a collapsed cycle, which
inherits the orientation provided by Proposition 3.1(e).

Example 5.1. Consider the couplet cycle of Example 2.4. It collapses
to

fee

3

γe

2

eff

with the inherited counterclockwise orientation. A loop labeled 1 has
been deleted from the unmarked vertex fee.

Define K2
Q to be the union of the set of all collapsed cycles with the

set of all idempotents ofQ. By convention, the idempotents may also be
considered as (degenerate) collapsed cycles. Note that |K2

Q| = σ(CQ).
The unmarking projection induces a quotient graph of CQ on the

vertex set K0
Q. Delete all loops from this quotient graph, and let K1

Q

denote the set of remaining edges. These remaining edges inherit labels
t1, t2 or t3 from CQ (again just written as 1, 2, or 3 in actual figures).

Lemma 5.2. Consider an edge

(5.1) (x1, x2, x3, i)
k (y1, y2, y3, j)
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of CQ. The following conditions are equivalent:

(a) xi = xj;
(b) yi = yj;
(c) The edge (5.1) unmarks to a loop.

Proof. Since (5.1) is not a stabilizing edge, one has tk = (i j). Thus
(a) and (b) are equivalent. If they hold, then (x1, x2, x3) = (y1, y2, y3),
so (5.1) unmarks to a loop. Conversely, if (c) holds, then (x1, x2, x3) =
(y1, y2, y3). Since xi = yitk = yj and xj = yjtk = yi, (a) and (b)
follow. �
Corollary 5.3. Let

(5.2) (x1, x2, x3, i)
k (y1, y2, y3, j)

be an edge of CQ that does not unmark to a loop. Then

(5.3) {xi, xj} = {yi, yj}
with xj = yi ̸= yj = xi.

Proposition 5.4. Let Q be a finite quasigroup of order n.

(a) |K2
Q| = σ(CQ).

(b) |K1
Q| = 3n(n− 1)/2.

(c) |K0
Q| = n2.

Proof. Since (a) and (c) have already been noted, it remains to verify
(b). Consider an edge (5.1) of CQ which survives the unmarking process
to appear in K1

Q. There are three choices for k. For each such choice,
there are n(n− 1)/2 choices for the doubleton (5.3). �

6. The dual complex

Let ZKr
Q denote the free abelian group onKr

Q, for 0 ≤ r ≤ 2. We will

define group homomorphisms ∂2 : ZK2
Q → ZK1

Q and ∂1 : ZK1
Q → ZK0

Q

to yield a(n oriented) complex

(6.1) K2
Q

∂2−→ K1
Q

∂1−→ K0
Q

known as the (dual) Norton-Stein complex KQ of the quasigroup Q.
The orientation of the edges in K1

Q is based on a well-ordering (Q,≤)

of the underlying set of Q. Consider an element of K1
Q, obtained by

unmarking an edge (5.2) of CQ. Its orientation is defined as

(6.2) x1x2x3
k−−−−→ y1y2y3

with yk+1 < yk+2 (using addition modulo 3 for the suffixes). Of course,
by Corollary 5.3, one then has xk+2 < xk+1. It is convenient to write
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(k, yk+1 < yk+2) for the oriented edge. The group homomorphism ∂1
takes (k, yk+1 < yk+2) to the signed sum y1y2y3 − x1x2x3. The group
homomorphism ∂2 maps a non-degenerate collapsed cycle to a signed
sum of the edges that constitute it. An edge takes a positive sign
if its orientation (6.2) is consistent with the inherited orientation of
the cycle, and a negative sign if the edge is oriented in the opposite
direction to the cycle. Degenerate collapsed cycles corresponding to
idempotents of Q are sent to 0 by ∂2.

Example 6.1. For a left couplet {e, f} of Q, consider the collapsed
cycle γe of Example 5.1. Suppose that e < f . The cycle becomes

fee

3
JJ

γe

JJ
2

eff

when its edges are oriented. It is sent to − (2, e < f) + (3, e < f) by
the group homomorphism ∂2. Now consider the corresponding couplet
cycle γf . It becomes

eff

3




γf




2

fee

when its edges are oriented, and maps to (2, e < f) + (3, e < f) under
∂2. The fragment

(6.3) {γe, γf}
∂2−→ {(2, e < f), (3, e < f)} ∂1−→ {eff, fee}

of the Norton-Stein complex corresponds to the connected component

1

�
�

�
�eff

2
���

3
PPP

fee
3

fee

1

2

eff

eff

2
PPP

3
���

1 fee

�
�

�
� 1

of ΓQ. Geometrically, the complex (6.3) is realized by a sphere. In
geographical terms, one might say that γe is the southern hemisphere,
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and γf is the northern hemisphere. Then (2, e < f) is the eastern half
of the equator, while (3, e < f) is the western half. The hemispheres
are oriented by normals emerging from the center of the earth. The ori-
entation of the equator lines corresponds to the direction of rotation of
the earth. The Gulf of Guinea contains eff , while fee lies somewhere
in Kiribati.

Remark 6.2. In the sense of [5, p.20], the complex (6.1) is dual to the
original Norton-Stein construction [8] as extended in [6]. In order to
distinguish the two complexes, it is sometimes convenient to refer to
the latter as the primal complex, while (6.1) is the dual complex.

7. The depleted complex

Let Q be a finite quasigroup, with set EQ of idempotents. Let K̃2
Q

denote the set of non-degenerate collapsed cycles of Q. Note that

(7.1) |K2
Q| = |K̃2

Q|+ |EQ| .

Set K̃1
Q = K1

Q. Let K̃
0
Q be the complement in K0

Q of the set {eee | e ∈
EQ}. Again, note that

(7.2) |K0
Q| = |K̃0

Q|+ |EQ| .

The depleted Norton-Stein complex K̃Q or

(7.3) K̃2
Q

∂2−→ K̃1
Q

∂1−→ K̃0
Q

of Q is defined from (6.1) by restriction.

Proposition 7.1. Let Q be a finite quasigroup. Then the depleted
Norton-Stein complex of Q is realized geometrically by an orientable
surface.

Proof. As a disjoint union of cycles, the set K̃2
Q of non-degenerate col-

lapsed cycles forms a planar graph, which may be drawn on the plane
so that each of the (disjoint) cycles is oriented in the counterclockwise

direction. Each cycle bounds a disc. The geometric realization of K̃Q is
then obtained from the union of these discs by identifying the bounding

edges from the set K̃1
Q. Each edge (6.2) appears twice, once on each of

a pair of discs. As these discs are stitched together along the edge by
the identification process, the orientations of the discs on each side of
the edge are consistent. (Compare Figure 1 for an illustration.) �
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γ1
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��

γ0
��

��

γ2
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��
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��

021�

Figure 1. A toral component in the complex of Z/3Z.

Example 7.2. Let Q be the group (Z/3Z,+) of integers modulo 3
under negated addition, with the natural order 0 < 1 < 2. Take the
complex cube root of unity ω =

(
−1 + i

√
3
)/

2 . The depleted complex
of Q has a geometric realization which includes a connected component
given by the (real) torus (or complex elliptic curve) C/ (Z+ Zω), i.e.,
identifying points of the complex plane that differ by an integral multi-
ple of 1 or an integral multiple of ω. This is illustrated in Figure 1, with
012 located at 1/3+(Z+ Zω) on the torus and 120 at ω/3+(Z+ Zω).
For each element x of Q, the corresponding cycle in Cx is labeled γx,
drawn with its orientation. The real and imaginary axes of the complex
plane, and the scale, are also indicated.

The following result is the counterpart of [8, Th. II], as extended
from the idempotent to the general finite case in [6].

Theorem 7.3. Suppose that Q is a quasigroup of finite order n. Then
the cycle number σ(CQ) of Q is congruent modulo 2 to the triangular
number T (n) = n(n+ 1)/2.

Proof. Proposition 7.1 shows that the Euler characteristic

|K̃2
Q| − |K̃1

Q|+ |K̃0
Q|
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of the oriented geometric realization of K̃Q is even. Thus by (7.1),
(7.2), and Proposition 5.4, the integer

σ(CQ)− 3n(n− 1)/2 + n2 = |K2
Q| − |K1

Q|+ |K0
Q|

= |K̃2
Q|+ |EQ| − |K̃1

Q|+ |K̃0
Q|+ |EQ|

is even. The result follows, since 3n(n− 1)/2−n2 ≡ T (n) mod 2. �
The first application of Theorem 7.3 gives a simplified proof of a

result of Stein [12], compare [6].

Corollary 7.4. Suppose that Q is a quasigroup of finite order n, with
a transitive group of automorphisms. Then n is congruent to 0, 1, or
3 modulo 4.

Proof. Suppose that n = 4k+2 for some natural number k. Since Q has
a transitive automorphism group, Proposition 2.5 shows that there is
a constant c such that Cx has c connected components for each x ∈ Q.
Hence σ(CQ) =

∑
x∈Q c = (4k+2)c ≡ 0 mod 2. However, Theorem 7.3

implies σ(CQ) ≡ (2k + 1)(4k + 3) ≡ 1 mod 2, a contradiction. �
As a second application of Theorem 7.3, we give a direct proof of a

congruence condition on the possible orders of general Schroeder quasi-
groups that was obtained by Lindner et al. using a combinatorial anal-
ysis [7, Th. 2]. Our method extends the “alternate proof” proposed
by Norton and Stein for the idempotent case [9, Th.4.2].

Corollary 7.5. If Q is a Schroeder quasigroup of finite order n, then
n is congruent to 0 or 1 modulo 4.

Proof. By Theorem 4.1, σ(CQ) = n2, while by Theorem 7.3, σ(CQ) ≡
n(n+ 1)/2 mod 2. However, n2 ≡ n(n+ 1)/2 mod 2 if and only if n
is congruent to 0 or 1 modulo 4. �
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