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Junctions are fundamental elements that support qubit locomotion in two-dimensional ion trap
arrays and enhance connectivity in emerging trapped-ion quantum computers. In surface ion traps
they have typically been implemented by shaping radio frequency (RF) electrodes in a single plane
to minimize the disturbance to the pseudopotential. However, this method introduces issues related
to RF lead routing that can increase power dissipation and the likelihood of voltage breakdown.
Here, we propose and simulate a novel two-layer junction design incorporating two perpendicularly
rotoreflected (rotated, then reflected) linear ion traps. The traps are vertically separated, and create
a trapping potential between their respective planes. The orthogonal orientation of the RF electrodes
of each trap relative to the other provides perpendicular axes of confinement that can be used to
realize transport in two dimensions. While this design introduces manufacturing and operating
challenges, as now two separate structures have to be precisely positioned relative to each other
in the vertical direction and optical access from the top is obscured, it obviates the need to route
RF leads below the top surface of the trap and eliminates the pseudopotential bumps that occur
in typical junctions. In this paper the stability of idealized ion transfer in the new configuration is
demonstrated, both by solving the Mathieu equation analytically to identify the stable regions and
by numerically modeling ion dynamics. Our novel junction layout has the potential to enhance the
flexibility of microfabricated ion trap control to enable large-scale trapped-ion quantum computing.

Keywords: trapped ion quantum computer, ion trap junction, ion trajectory dynamical stability, two dimen-
sional trap geometry, microfabricated ion trap

I. INTRODUCTION

High-fidelity quantum operations and engineering ad-
vances over the last decade have established trapped ions
as strong candidates for constructing a practical quantum
computer. The fundamental component of a trapped-
ion quantum computer is the RF Paul trap, which uses
oscillating and static voltages applied to electrodes to
constrain ions whose internal states provide the physical
basis for the logical qubits. Lasers and/or microwaves
are used to initialize, read out, and perform quantum
gates on the ionic qubits [1]. While microfabricated lin-
ear traps have been developed for over fifteen years [2–5],
and have been used for sophisticated multi-ion experi-
ments [6, 7], microfabricated junction traps [8] have only
recently shown sub-quantum excitation during transport
[9]. Even with that demonstration, key challenges re-
main to the scaling up of trapped-ion arrays to achieve
the connectivity required for enlarged quantum volume,
faster computational cycles, and increased qubit capacity
[10].

An RF Paul trap confines ions at distances of tens
[11] to hundreds [12] of microns from the closest sur-
faces, effectively isolating them from the environment.
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While Earnshaw’s theorem prohibits the creation of an
electrostatic potential well, an RF voltage can be ap-
plied to particular electrodes to form a time-averaged
pseudo-potential with a minimum determined by the RF
electrode geometry [13]. Quasi-static voltages applied to
separate control electrodes can be used to store and move
ions along the RF null, a line along which the RF electric
field is zero and there is a resulting minimum in the ra-
dially confining pseudopotential. The original Paul traps
typically had hyperbolic electrodes [14], but modern mi-
crofabrication techniques use layered planes of materials
to create two-dimensional trap geometries [15]. Linear
RF nulls are common, but can be modified to produce
curves and junctions for the transfer of ions between mul-
tiple ion traps [16].

There are two main categories of trapped-ion quantum
computing architectures: the quantum charge-coupled
device [17], and those that rely on stationary chains
of ions with all-to-all intra-chain gate operations and
remote entanglement via photons to connect separate
chains [18]. In the former case, ion transport is the pri-
mary conduit for entangling distant ions. In the latter
case, while photonic interconnects are used to connect
distant chains, some level of ion transport between dis-
tinct but nearby chains may still be advantageous.

A 2D ion layout reduces the scaling of transport times
over arbitrary distances from O(n) for a 1D layout to
O(n1/2), where n is the number of ions [19]. A 2D lay-
out also better matches the connectivity requirements of
surface codes used for quantum error correction [20, 21].
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Both 3-way [22] and 4-way [23] junctions enable grid-
based ion transport to support arbitrary 2D movement.
However, scaling the array size using these junctions
presents the challenge of islanded RF electrodes [24, 25]
that require electrical vias and leads routed underneath
the top metal surface, raising the capacitance and resis-
tance of the device, and thereby increasing the RF power
dissipation. These buried leads also increase the likeli-
hood of voltage breakdown between RF and ground, as
they introduce more locations where the RF electrode
or lead approaches a grounded electrode or lead, often
within only a few microns.

Our design achieves 2D connectivity with simple rect-
angular RF electrodes, avoids islanded RF electrodes,
and does not require RF vias. It utilizes low-excitation
transport protocols already developed for use with cur-
rent linear micro-fabricated ion trap designs. The pri-
mary challenge is that two separate trap layers have to
be assembled, imposing design constraints on the con-
ventional microfabrication techniques and limiting opti-
cal access. While these are important considerations, we
consider here whether the trap, if fabricated and assem-
bled, would form a viable junction.

The paper begins with the initial layouts and conven-
tions for the junction design (Sec. II), and then presents
the formal treatment of ion transfer stability (Sec. III,
IV). It concludes with a discussion of the unique chal-
lenges and opportunities that arise at an architectural
level for the ion trap configuration (Sec. V, VI).

II. BASIC JUNCTION DESIGN

Ions in a surface trap are confined at points above the
top plane of the trap at the RF null. Right-handed or-
thogonal coordinates are used throughout this document,
whereby the ion travels along the x-axis, and the z-axis
is perpendicular to the trap surface [26]. The Peregrine
trap serves as an example to illustrate the proposed junc-
tion [27]. Fig. 1 displays the entire device, where the
relevant trapping portion is in the central isthmus.

In our proposed junction design, the ion trap is du-
plicated, translated vertically, inverted, and then rotated
90◦ about the z axis, as illustrated in Fig. 2. In any such
combined configuration, the fields generated by each in-
dividual trap are modified by the second trap acting as a
ground plane. If the RF rails on the top and and bottom
traps were aligned and voltages were applied to both at
the same time, then the RF null would be half-way be-
tween the trap planes (like a 4 rod trap but with addi-
tional grounded regions). However, with only one set of
RF electrodes fully on at a time, the RF null ends up at
a distance of less than half the trap separation (closer to
the trap that is on), and so the two RF nulls do not di-
rectly overlap. Nevertheless, the slight separation of the
RF nulls is not an obstacle to ion transfer. For two Pere-
grine traps offset by 50µm, the RF nulls are 23.7µm from
each surface. The simulations described later show that

xy
z

FIG. 1. SEM micrograph of a Peregrine trap. This microfab-
ricated trap confines ions to a linear region 72µm above the
surface. The trap consists of alternating aluminum electrode
and oxide insulation layers, with an evaporated gold region
on top.

ions can still be transferred from one trap to the other,
across the 2.6µm vertical separation of the RF nulls.
If RF voltages were applied simultaneously to both

traps, there would be a pseudopotential barrier prevent-
ing an ion from being shuttled from one trap to the other.
Therefore, a scheme is employed that starts with the RF
voltage applied to trap b (bottom trap in Fig. 2b) but not
trap t (top trap in Fig. 2b). Once an ion is transported to
the intersection of the traps, the static and RF voltages
are gradually switched until the ion is confined by trap t.
In the case where the RF electrodes on one trap are all
connected, all ions have to transfer from one trap to the
other at the same time, or be lost. An alternative would
be to segment the RF electrodes and apply independent
voltages to different segments, but this would require the
vias that we wanted to avoid in the first place.
While this design involves passing ions from one trap

to another vertically and in the process turning one trap
on and another off, a demonstration of passing ions from
one trap to another in the same plane by abutting (but
not contacting) the separate RF electrodes has been suc-
cessfully achieved [28]. In this case the RF pseudo-
potential provides nominally undisturbed confinement
across chips. There has also been a demonstration of
vertical transport of charged macroscopic particles in a
3D trap [29] that uses suspended wires. While this 3D
geometry would face similar optical access challenges and
likely greater manufacturing challenges compared to the
bilayer trap described in this paper, it shows that 3D
traps with motion in all three dimensions is possible.
For modelling purposes, the x-, y- and z-orientations

are determined by trap b. The origin of the coordinate
system occurs at the nexus of the junction and is the
symmetric point between the two traps.
A mathematical model describes the transfer of the
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FIG. 2. A conceptual rendering of the two-layer junction
design, here integrated into a potential configuration of par-
allel arrays. Two traps in a pair are vertically separated and
rotoreflected relative to each other. Part a) shows a zoomed-
out view that highlights the linear nature of the traps, and
their orientation relative to each other. The RF electrodes are
green, and the control electrodes are yellow. Part b) shows
the position of the ions in the plane between two traps, with
a junction that lies at the point of symmetry. The ions and
arrows are for illustration; as explained later in the paper the
concept of operation supports one of the traps providing con-
finement at any given time.

ion from its trapping location in the bottom trap at
x = 0, y = 0, z = −s to the top trap at x = 0,
y = 0, z = s. Here, s is half the vertical separa-
tion between the traps. The potential in the bottom
trap is ϕb(x, y, z, t) = ϕC,b(x, y, z, t) + ϕRF,b(x, y, z, t) =
ϕC(x, y, z + s) + ϕRF (x, y, z + s, t), where ϕb is the sum
of the potentials due to the control electrodes (ϕC) and
RF electrodes (ϕRF ). The potential arising from the
top trap when the same voltages are applied to the cor-
responding electrodes is ϕt(x, y, z, t) = ϕC,t(x, y, z, t) +
ϕRF,t(x, y, z, t) = ϕC(y,−x, s− z) + ϕRF (y,−x, s− z, t).

The model specifies a protocol for transferring the ion
from the bottom trap to the top trap using a time-
dependent scalar function, f(t), that specifies how the
voltages applied to the trap electrodes are scaled in time.
The total potential is therefore

Φ(x, y, z, t) = (1− f(t))ϕb + f(t)ϕt . (1)

Simple forms of the transfer function f(t) could be
instantaneous Heaviside functions or linear transitions
from 0 to 1, but in practice smooth transitions to limit

induced motional excitations are preferable.

The subsequent section determines the stability of the
trap throughout the transition from f(t) = 0 to f(t) = 1
over a definite time interval.

III. ANALYTIC ION STABILITY

The analytic expression describing an ion in a Paul
trap is the Mathieu equation. We begin with a treatment
of the relevant aspects of the Mathieu equation in one di-
mension [30], and then extend and apply it to the ques-
tion of trapped-ion stability in three dimensions. Stabil-
ity diagrams locate where confined particle motions can
be maintained. Numerical flight simulations then show
how the ion is stably controlled at all points during the
transfer from one trap to the other.

A. Mathieu stability

The Mathieu equation can be written (in the “canon-
ical form” of [30]) as

q′′ + (U + 2V cos(2t))q = 0, (2)

with t a unitless parameterization for time defined by
the RF drive voltage, and q the ion position in one di-
mension. For the current application, U corresponds to
the static confining voltage along one dimension. The
sign of U determines if the static potential is trapping or
anti-trapping. The parameter V corresponds to the root
mean square magnitude of the oscillating voltage. Solu-
tions are stable if they are locally confined as t → ∞;
otherwise, they are unstable. Although here we use the
unitless t for mathematical simplicity, often the Math-
ieu equation is instead written with Ωt/2, where Ω is
the drive frequency in radians/s and t is the real time in
seconds.

Taking even integers r, solutions of the form

q =
∑
r∈2Z

cre
(w+ri)t (3)

are considered, noting that their boundedness depends
on the real part of w ∈ C, an arbitrary parameter. For
Eq. 3 to be a solution (with non-zero constants cr), the
algebraic equations

ζrcr−2 + cr + ζrcr+2 = 0

with ζr = V/[(r − wi)2 − U ] must be completely satis-
fied. Thus, the vanishing of the meromorphic function
(The ratio of two analytic functions over the complex
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FIG. 3. Stability diagram for parameter pairs (U, V ) in the
one-dimensional Mathieu equation, Eq. 2. The coloring corre-
sponds to w values in Sec. III with intermediate values being
more stable, and the extremes near 0.0, 1.0 being more eccen-
tric. However all colored points correspond to stable orbits,
and internal colorings simply give an idea of the qualitative
character such orbits have. The plot displays 0 for unstable
points and positive values for stable solutions. Relevant an-
alytically smooth bounding functions a0(V ), a1(V ), b1(V ) are
colored black and labeled.

plane.)

∆(iw) =

∣∣∣∣∣∣∣∣∣
· · · · · · · · · · · · · · · · · · · · ·
· · · ζ−2 1 ζ−2 0 0 · · ·
· · · 0 ζ0 1 ζ0 0 · · ·
· · · 0 0 ζ2 1 ζ2 · · ·
· · · · · · · · · · · · · · · · · · · · ·

∣∣∣∣∣∣∣∣∣
over C locates the non-trivial solutions.

The function ∆(iw) of w is periodic, with period 2i.
Further, it is even: ∆(iw) = ∆(−iw). Its behavior is
determined by the strip 0 ≤ ℑ(w) ≤ 1. The only singu-
larities of the function ∆(iw) are simple poles occurring
where U − (r− iw)2 = 0. In particular, there is only one
pole on the strip 0 ≤ ℑ(w) ≤ 1.

Next, consider the even meromorphic function

χ(iw) =
[
cosπiw − cosπ

√
U
]−1

with period 2i, and also with simple poles at the same
locations as those of ∆(iw). It follows that there is a con-
stant C, determined by the ratio of the residues of the
functions ∆ and χ at their common pole on the strip,
such that the function ∆(iw) − Cξ(iw) has no singular-
ities, and is therefore constant by Liouville’s theorem.
Setting w = 0 determines C, and further algebra yields

the existence of bounded solutions when

w =
1

π
cos−1[1−∆(0)(1− coshπ

√
U)] (4)

for real w. These w-values may be located by iterative
approximation, readily identifying the set S of stable
pairs (U, V ) as displayed in Fig. 3 (compare Ref. [30,
Fig. 8(a)]). The relevant curves separating the stable
and unstable regions are labelled with standard function
names a0, a1, b1, with approximate forms available in the
literature [30].

B. Junction stability

The analysis of an ion trap involves three distinct
Mathieu equations, one for each dimension. The inter-
play of these equations imposes additional stability con-
straints. In the process of transferring an ion from trap
b to trap t, the static and RF potentials are expressed as
quadratic functions at the RF null, assuming symmetric
control voltages and neglecting the minute higher-order
contributions:

ϕ = αx2 + βy2 + γZ2.

Here Z = z−s′ (where s′ = −s (+s) for the lower (upper)
trap) is the vertical distance from the RF null of the
applicable controlling trap. Additionally, given the long,
straight RF electrodes, the RF potentials are assumed
to be ideally linear along the x-axis for the bottom trap
(y-axis for the top), such that αRF = 0 (βRF = 0). The
absence of free charges implies α+β+γ = 0 for each field,
resulting in a simplified bottom-trap control potential of:

ϕC,b = αx2 + βy2 + γZ2

with γ = −α− β, and a bottom-trap RF potential of:

ϕRF,b = cos(2t)(−2µy2 + 2µZ2)

with the parameter µ tracking the RF voltage. Similar
equations can be generated for the top trap by inter-
changing the x and y terms. The RF voltages applied to
the bottom and top traps are set to be in-phase.
Accounting for the relative rotoreflection of the top

and bottom traps, the total control and RF potentials as
the ion is transferred from the bottom trap to the top
trap (described by Eqn. 1) are calculated to be

ΦC =
[
(1− f(t))α+ f(t)β

]
x2

+
[
(1− f(t))β + f(t)α

]
y2

+
(
1− f(t)

)
γ(z + s)2 + f(t)γ(s− z)2

and

ΦRF = cos(2t)
[
−f(t)2µx2 −

(
1− f(t)

)
2µy2

+
(
1− f(t)

)
2µ(z + s)2 + f(t)2µ(s− z)2

]
.
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Without loss of generality we set f(t) = t/T = τ , where
T is the unitless time over which ions are transferred at
a linear rate from one trap to the other. For evaluating
the stability of this trap it therefore suffices to determine
if the pairs(

τβ + (1− τ)α, τµ
)

and
(
− α− β, µ

)
(5)

lie in the stable set S for 0 ≤ τ ≤ 1. By assumption,
the motional excitation of the ion and the spatial sepa-
ration of the traps is small enough such that, if the ion
is trapped by one pseudopotential at the junction, it is
also trapped by the other (although the nulls are not the
same). The validity of this assumption is borne out by
the flight simulations described in Sec. IV

When an ion is held at a single point in a simple lin-
ear trap, stability merely requires that the three points
(α, 0), (β, µ), and (−α − β, µ) all lie in the stable set
S. This situation, illustrated in Fig. 4, applies at the
start of a junction transfer, when τ = 0. When α = 0
in the figure, the two stability conditions imposed are
(β, µ), (−β, µ) ∈ S. This corresponds to requiring the
point (β, µ) to lie both in the region displayed in Fig. 3,
and in the corresponding region obtained by reflection
about the line U = 0. The bounding surfaces of this
stability region are determined by the inequalities

a0(µ) < β , (−α− β) < min{a1(µ), b1(µ)}

using the functions defined in Fig. 3, and α > 0.

FIG. 4. The three-dimensional region of stability for a single
linear Paul trap. The region is symmetric in the RF voltage
parameter µ. Since the parameter α controls the ion along
the trap axis, it must be positive. The parameter β tracks
the static electrode transverse containment. The height of
the solid is emphasized by the coloring to make the α-extent
of the solid more visible.

A complete junction transfer (µ, β, α) is considered to
be stable if each of the three individual one-dimensional
Mathieu equations remain stable throughout the transfer
operation. Thus, as described by Eq. 5, the stability con-
dition is the conjunction of the simple stability condition
that (−α−β, µ) lies in S, and the dynamic stability con-
dition that (α(1− τ)+βτ, µτ) lies in S for all 0 ≤ τ ≤ 1.
A map of parameter points (µ, β, α) which are stable for a
linear trap, but unstable for a junction transfer, is shown
in Fig. 5. Note the four portions, all lying in the re-
gion depicted in Fig. 4. The bottom portions are banned
for small values of α. These regions correspond to when
the ion escapes along the x axis when the line formed
by

(
τβ + (1 − τ)α, τµ

)
crosses below a0. The bound-

ary of this region is then computed, considering the line
(α, 0)− (β, µ), to obtain the inequalities

m =
β − α

a′0µ
and a0(m) <

β − α

µ
m+ α .

The top portions correspond to α > 1.0, the point of sep-
aration between the regions of stability in Fig. 3. Phys-
ically, this region appears because α > 0 confines the
ion along the x-axis, but repels it along the z-axis, no
longer confining the ion when the repelling force due to
large α rivals the confining pseudoforce due to µ. The
different regions of stability are connected by a single
point. When (α, 0) is in the second region of stability,
(α(1− τ)+βτ, µτ) intersects an unstable region, and the
junction fails. A protocol holding the parameters in this
region would create an unstable ion trap junction. On
the other hand, protocols within the difference set be-
tween the respective regions of Fig. 4 and Fig. 5 keep the
junction stable. Qualitative analysis of ion motional fre-
quencies indicates that low values of α and µ are expected
for trap operation. Thus, the α > 1.0 region of instability
does not impede ion junction operation in practice.

We have thus demonstrated analytically that transfer
protocols, stable under adiabatic operation, exist for the
proposed geometry represented by the set difference be-
tween Fig. 4 and Fig. 5. In those cases for which the
point (µ, β, α) lies in the region specified by Fig. 5, the
control electrodes corresponding to α and β can be tuned
to ensure junction stability.

IV. NUMERICAL ION STABILITY

As a complement to the analysis in the preceding
section, numerical simulations were also performed to
demonstrate the successful transfer of an ion from one
trap to the other, under standard stability conditions for
intermediate junction states. An electrostatic model was
generated, and control solutions to trap the ion in all
three directions at each of the final null points (corre-
sponding to f(t) = 0 and 1) were obtained. The resulting
potentials were used to calculate the electric fields and
ion dynamics using the Runge-Kutta (RK4) method [31].
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FIG. 5. The components of the solid for a single Paul trap
in Fig. 4 that are unstable for a junction transfer. The set
difference between these components is the stable region in
which a junction can operate. The bounds of the regions are
calculated by testing the inclusions specified in Eq. 5. A map
contained within the region depicted in Fig. 4, illustrating the
parameter space where a junction between two linear Paul
traps would become unstable. The set difference between the
regions depicted in Fig. 4 and here determines the stability
region for the junctions. The relevant unstable regions for
single ion traps are the twin dark blue volumes at the bottom.
These unstable regions may be avoided by tuning the control
electrodes.

The following subsections provide more details about
these steps.

A. Field and flight simulation

Each electrode generates an electric field based on the
supplied voltage and trap geometry. The geometry an-
alyzed here uses the same lateral layout of electrodes
as in the Peregrine trap, which by itself has an ion
height of 72µm. When two of these planes of electrodes
are combined in the orientation shown in Fig. 2 with
a 50µm separation, the RF null moves to 23.7µm above
the lower trap. For an applied RF voltage with a 31MHz
drive frequency and 56V amplitude, this trap produces
a 2.75MHz radial trapping frequency for ytterbium ions,
corresponding to µ = 0.25. The general methodology for
correlating practical trap designs with the analytic treat-
ment in this paper is explained in the caption for Fig. 6,
which includes the unusually high value of µ = 0.75 to
demonstrate trap dynamics. As µ is decreased, ion en-
trapment becomes sinusoidal, avoiding the sharp peaks
observable in Fig. 6.

Using this geometry, a boundary element model was
generated with Charged Particle Optics (CPO) software
[32] to determine the electric potential on a grid of points
in the region of interest around where the two traps cross.
These potentials were numerically calculated for voltages
applied to each trap separately (while the other trap was
grounded). The output was a grid of electric fields for
each trap, which could be added together after being
scaled by the applied voltages and f(t) to calculate the
field dynamics before, during, and after the transition.
To calculate ion trajectories accurately, Catmull-Rom in-
terpolation [33] was used to interpolate between mesh
values.
For the flight simulation the state of the ion is taken

to be (c,p,v), where c,p, and v are the charge, posi-
tion, and velocity, respectively. The ordinary differential
equation governing the ion dynamics is

∂t(c,p,v) =
(
0,v,

∑
r∈rect

∇Φ(p, t)
)
,

where
∑

r∈rect ∇Φ(p, t) is the sum of the electric fields
over all electrodes given predetermined voltages. The
RK4 method was used to simulate the motion of the ion,
due to its accuracy and efficiency at calculating trajecto-
ries for potentials defined by low-order polynomials.

B. Dynamic junction stability

While the first test of junction stability using the nu-
merical method outlined above verified ion stability at
fixed voltage levels, a second test confirmed the stability
of the complete transfer protocol. The trap from Fig. 1
served as a basis for one of the layers, duplicated to pro-
duce the full local configuration, as shown within the
global configuration of Fig. 2. Initially, a spread of stable
junction parameter configurations was considered, using
the results from Fig. 5.
Stable solutions were verified for f(t) = 1/2, demon-

strating a static solution with the ion suspended between
the traps for a paused junction operation. Then, trans-
fers were validated using a function f(t) which has three
parts consisting of storing the ion with the bottom trap,
linearly transferring to the upper trap, and finally storing
the ion with the upper trap, all scaled to cover an arbi-
trary number of RF cycles. Sample paths are displayed in
Fig. 6 in conjunction with their analytic stability triplets.
The qualitative behavior of these paths is discussed in
Subsection IVC. Due to deviations in the trapping po-
tential far from the origin, trap stability was weakened
for large values of α, to the point that stability is lost for
α > 0.3. However, as noted at the end of Sec. III, large
values of α are rarely relevant for practical ion junction
operation. Additionally, Fig. 6 illustrates differences in
axial potential strength and practical configurations for
ion junction tuning, as further discussed in the caption.
Instantaneous transfers are theoretically possible, but
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will be practically limited by filters on the RF voltages
and the need to minimize motional excitation. In numer-
ical tests, control electrodes successfully contained the
ion, although in some transfers, the average vy was in-
creased. This corresponds to the attenuation of the sta-
bility cross-section of the junction transfer observed as α
increases in Fig. 5, predicting that the ion would be lost
in the y-axis for sufficiently large α.
No tuning was necessary to configure the traps, as all

tested trap frequencies naturally occurred in the stable
region for the two-trap protocol. This is expected to hold
true for common ion trap configurations.

C. Dynamic ion path visualization

To gain a holistic, qualitative portrait of the ion tra-
jectories associated with Fig. 5, four individual ion tra-
jectories are displayed in Fig. 6. The parameter µ
was taken to be 0.75, and the pairs (α, β) were chosen
as (0, 0), (0.2, 0), (0.29, 0), and (0.29,−0.15) for subfig-
ures A–D, respectively. The total transition time was
T = 2.9µs. The function f(t) was 0 until T/3, increased
linearly to 1 at 2T/3, and then held at 1 until T . For each
trajectory, an ion at the RF null was initialized with the
exaggerated initial velocity of (5, 5, 5)m/s. Red (solid),
green (dashed), and blue (dash and dotted) lines corre-
spond to x, y, and z respectively. Note that as the trap
junction is centered at 1.5µs, for the rotoreflected traps,
the x- and y-axes are effectively switched before and after
the 1.5µs mark, and the z trapping potential is inverted.

The first trajectory, visualized in A, is an example of
the ion failing to remain within the confines of the trap.
The reason the confinement fails along this edge of the
stability regime is that the longitudinal trapping poten-
tial is non-existent, enabling the ion to drift out the two
opposing ends of the trap. Before 1.5µs, the lack of a
trapping potential along the x-axis is visible as the ion
drifts to the negative direction in red. After the junction
operation, the axial trapping potential confines the ion
along the x direction. However, as a result of the rela-
tive rotation of the traps, the ion is now no longer con-
fined along the y-axis. Before the junction operation, the
ion experiences fine oscillations along the y-axis. How-
ever, after the junction operation, these oscillations are
no longer confined, manifesting as a slight bias to the
right direction. This bias can be observed by noting the
drift of the green line as the ion starts centered with the
red oscillations, but eventually reaches the peak of the
red oscillations. If the diagram were doubled in dura-
tion, this drift would continue until the ion was thrown
off the end of the trap.

The second trajectory, visualized in B. is an example
where the ion is successfully confined. At this point in
the stability diagram, the ion is confined along both the
x- and y-axes, so the only oscillation is along the z-axis.
Here the ion maintains a smooth transition between the
two trap minima at (0, 0, 1µm) and (0, 0,−1µm). Stabil-

ity (in terms of ion oscillations) appears to be optimized
by sampling from the center of the stability diagram.

The third trajectory, visualized in C, is an example
where the ion is confined in both the x- and y-axes, but
is close to the edge of the stability diagram. As this
corresponds to an increase in α, and therefore an increase
in the z trapping potential, the non-parabolic trapping
potential is more obvious, as the ion oscillates across the
center of the two traps, even while being confined.

Finally, D illustrates that the performance of bmay be
recovered by increasing β until the trap operation is again
at the center of the stability diagram. However, increased
oscillations result from the increase in the trapping po-
tential, in accord with the harmonic oscillator solution.

Qualitatively, this suggests that the optimal trapping
potentials are found as far from the edges of the stability
region as possible, and that stability degenerates as the
µ value is increased.

V. TRAP CONFIGURATION AND
ARCHITECTURE

In order to implement this junction scheme, the RF
electrode voltage must be lowered on one entire trap
while it is simultaneously raised on the other trap. There
are two ways to accommodate this requirement. The
first is to rely on a segmentation of the RF rails, such
that particular sections of the linear traps are on while
other sections are off. This nontrivial hardware change
would facilitate a simple qubit transport protocol that
would allow arbitrary ion movement within the array,
but would require vias and screened RF leads under the
top metal layer. Segmented RF designs have been stud-
ied and attempted, but so far with limited success due
to technical challenges like equalizing the phase and am-
plitude of distinct but neighboring switchable RF elec-
trodes. The second option is to use linear traps where
continuous RF electrodes are all on or all off, depending
on the layer. This simplifies the hardware, but limits the
allowed transport at a given time to a single dimension.

Fig. 7 presents a layout with continuous RF electrodes.
Five ions that form a plaquette in a surface code are
shown; the data ions are stored at the RF rail crossings
(in xy) of the two traps so that they can remain later-
ally stationary during syndrome extraction, but move in
z according to which trap is enabled. The ancilla ion
moves in xy to interact with each neighboring data ion
[34]. In this scheme all ions, data and ancilla, would
be confined by one layer or the other at a given time.
When making that transition they would be positioned
at the RF rail crossing points and simultaneously moved
in z. Neighboring plaquettes with different movement
patterns would require pauses in transport to accommo-
date times when ancilla ions are scheduled to move in
orthogonal directions. Non-nearest neighbor movement
patterns are also possible with this design, and will be
highly dependent on junction timing, cooling protocols,
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FIG. 6. An illustration of stable ion flights for the two-layer junction trap with µ = 0.75 and varied (α, β) =
(0, 0), (0.2, 0), (0.29, 0), (0.29,−0.15) for subfigures A–D, respectively. The total transition time was T = 2.9µs, and f(t)
was 0 until T/3, increased linearly to 1 at 2T/3, and then held there until T . For each trajectory, an ion at the RF null was
initialized with the exaggerated initial velocity of (5, 5, 5)m/s. Red (solid), green (dashed), and blue (dash and dotted) lines
correspond to x, y, and z respectively. Trajectory A was not predicted to be stable. The instability is confirmed by close
examination of the behavior along the y-axis: After junction operation, the ion has a small velocity in the positive y-direction
due to a lack of a containing α-field. In B–D with α > 0, the ion is completely stable. However, in the increase of α from B
to C, the erosion of the z-axis confinement due to the α-field generating a repulsive potential becomes increasingly evident, as
the ion center is shifted off the RF null by α-field asymmetries. In D, restrengthening the z-axis field by making β negative
illustrates one approach to ensuring ion stability, the other being to work with small µ and α. Values of α larger than 0.3 failed
to confine the ion, due to ion momentum during junction operation which was not included in our time-independent analysis.
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y

x

FIG. 7. Sample layout of four data ions (blue) and one
ancilla ion (red) arranged in a surface code plaquette. In this
diagram they are all trapped at the intersection of the two
trapping layers, even though only one trapping layer is active
at a time (except during transitions).

and other specifics in order to minimize latency due to
transport. As an example, consider a particular quantum
program, consisting of a compiled sequence of two-qubit
gates entangling qubits i and j. With a fixed maximum
qubit capacity per trap, connectivity may be represented
as a graph, and a simple greedy algorithm used to group
qubits according to gate requirements.

VI. CONCLUSION

We have introduced a novel concept for a microfab-
ricated ion trap that supports 2D ion transport using
vertically offset planar traps with RF electrodes that are
perpendicularly oriented. We developed a mathemati-
cal model of our junction, and solved it analytically for
bounded ion trajectories. The analytical model was aug-
mented by a dynamic numerical simulation of successful
ion transfer, verifying the existence of stable ion trajec-
tories throughout the transfer from one trap to the other.

We highlighted two types of RF electrode architectures
for synchronous ion transport to complement the unique
global trap structure required by the proposed junction
geometry. Segmented RF rails require modifications to
the simple and continuous rail designs currently in use,
but enable unrestricted ion transport protocols between
traps. Continuous RF rails do not require any additional

hardware design or modification, but will require coordi-
nated transport that may lead to additional latency.
While this novel junction design solves the problem

of RF lead routing for larger arrays of 2D ion traps, it
introduces other challenges that have to be overcome to
make it practically useful. Some of these may be solved
with additional integration, like replacing free-space
delivery and collection optics with microwave-based
gates, integrated waveguides, and detectors. A fuller
analysis would also require trap-specific simulations to
identify the optimal RF and control voltage protocols for
transferring ions with minimal motional excitation. The
ions would not be stored at a pure RF null during the
transition and therefore would experience an unavoid-
able amount of micromotion, so the RF drive voltage
would have to be low-noise in order not cause excessive
motional heating. Even with these new challenges,
the analysis in this paper shows that a two-layer trap
geometry based on surface traps can enable 2D qubit
connectivity for trapped-ion quantum computing.
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