
Algebra Univers.           (2019) 80:20 
c© 2019 The Author(s)
https://doi.org/10.1007/s00012-019-0595-3 Algebra Universalis

Barycentric algebras and beyond

A. Komorowski, A. B. Romanowska and J. D. H. Smith

Abstract. Barycentric algebras are fundamental for modeling convex sets,
semilattices, affine spaces and related structures. This paper is part of a
series examining the concept of a barycentric algebra in detail. In pre-
ceding work, threshold barycentric algebras were introduced as part of
an analysis of the axiomatization of convexity. In the current paper, the
concept of a threshold barycentric algebra is extended to threshold affine
spaces. To within equivalence, these algebras comprise barycentric alge-
bras, commutative idempotent entropic magmas, and affine spaces, all
defined over a subfield of the field of real numbers. Many properties of
threshold barycentric algebras extend to threshold affine spaces.
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1. Introduction

This paper is part of a series that is devoted to extensions of the concept of
barycentric algebras. Barycentric algebras form a variety generated by convex
sets, when the latter are viewed as algebras equipped with the set of binary
convex combinations indexed by the open real unit interval I◦, subject to the
hyperidentities of idempotence, skew-commutativity, and skew-associativity.

The first extension examined barycentric algebras over subfields of R [25,
§5.8]. Next, certain subrings of R were brought into consideration [2,3,4], in
particular the ring Z[1/2] of dyadic numbers [12,13,14,15], and other principal
ideal subdomains of R [22]. In [18], it was observed that when the closed unit
real interval was used to index the basic operations of a barycentric algebra,
then the interval naturally assumed the structure of an LΠ-algebra, one of the
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three main types of algebra in fuzzy logic [6]. Thus barycentric algebras were
recognized as two-sorted algebras, where one of the two sorts is an LΠ-algebra.

More recently, threshold barycentric algebras were introduced in [9], in
order to analyze the axiomatization of convexity, and for applications in math-
ematical biology. The open real unit interval of convex combinations is replaced
by a possibly shorter symmetric subinterval containing 1/2; the remaining
operations are trivial left or right projections. Using such algebras, it was
shown (in answer to a question posed by the late Klaus Keimel) that skew-
associativity, which is one of the three basic hyperidentities defining barycen-
tric algebras, cannot be replaced by entropicity in the axiomatization. It was
shown that each shorter (non-trivial) subinterval generates all the operations
of barycentric algebras. As a consequence, threshold barycentric algebras are
equivalent either to barycentric algebras, or to commutative binary modes (al-
gebras with a single binary commutative, idempotent and entropic operation).
Threshold algebras have many interesting properties, and provide a common
framework for a wide range of algebras, from the usual barycentric algebras at
one end, to commutative binary modes at the other.

In this paper, the concept of a threshold algebra is extended to a yet
broader spectrum of algebras, embracing affine spaces over subfields F of the
field R. Affine spaces are taken as algebras with binary affine combinations
indexed by the elements of F . In threshold affine spaces, the basic set of binary
operations is replaced by a set of operations indexed by a symmetrical interval
J containing 1/2, declaring the remaining operations to be trivial left or right
projections. Many results concerning threshold barycentric algebras also hold
for threshold affine spaces. In particular, we show that if the closed unit interval
I of F is a proper subset of J , then the operations from J generate all the
affine space operations. As a consequence, it transpires that threshold affine
spaces over F are equivalent to one of three types of algebras: affine spaces,
barycentric algebras, or commutative binary modes. This shows that threshold
affine spaces provide a common framework for a larger spectrum of algebras
than threshold barycentric algebras. As in the case of barycentric algebras, an
analysis of the identities holding in threshold affine spaces reveals dependencies
between the axioms of affine spaces, and between the axioms of affine spaces
and barycentric algebras defined over the base field F .

The paper is organized as follows. Section 2 offers a short introduction
to the theory of barycentric algebras and affine spaces. Section 3 provides
an analysis of basic identities holding in affine spaces and barycentric alge-
bras, showing in particular the meaning of skew-associativity for affine spaces.
Relations between the axioms of affine spaces and the axioms of barycentric
algebras defined on a fixed subfield of the field R are obtained. In Section 4,
certain binary reducts of affine spaces are considered, determined by closed
intervals of F of the form [t, t′ = 1 − t] for any t ∈ F . Up to equivalence, these
intervals of operations are sufficient to describe three types of related algebras:
affine spaces, barycentric algebras, and commutative binary modes. Threshold
affine spaces are introduced in Section 5, where the main results concerning
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such algebras are proved. The final section describes meets and joins of va-
rieties of threshold affine spaces over the field F . In particular, Theorem 6.4
provides a correction to the comparable results of [9, §12], where one case was
omitted.

From this paper and [9], it is clear that all (symmetrical) intervals of F
containing 1/2 may be used to define affine spaces or barycentric algebras.
However, they do not all play an equally important role in defining such al-
gebras. The most fundamental intervals are the unit interval and the whole
line F , which both carry the structure of a dual monoid with involution in
the sense of [8]. Investigations of further extensions will concentrate on find-
ing the appropriate detailed algebraic structure of such intervals, and then
using this structure as a source of basic operations for further extension of the
barycentric algebra concept.

Background facts concerning convex sets, barycentric algebras and affine
spaces are summarized in Section 2. Readers may also consult the references
at the end of this paper, and a newer survey provided in [21]. For additional
information on such algebras, and modes in general, see the monographs [23,
25]. Notation and conventions generally follow those of the cited monographs
and [27].

2. Modes, affine spaces and barycentric algebras

In the sense of [23,25], modes are defined as algebras where each element forms
a singleton subalgebra, and where each operation is a homomorphism. For
algebras (A,Ω) of a given type τ : Ω → N, these two properties are equivalent
to satisfaction of the identity

x . . . xψ = x (2.1)

of idempotence for each operator ψ in Ω, and the identity

(x1,1 . . . x1,ψτψ) . . . (xφτ,1 . . . xφτ,ψτψ)φ

= (x1,1 . . . xφτ,1φ) . . . (x1,ψτ . . . xφτ,ψτφ)ψ (2.2)

of entropicity for each pair ψ, φ of operators in Ω.
One of the main families of examples of modes is given by affine spaces

over a commutative unital ring R (affine R-spaces), or, more generally, by
subreducts (subalgebras of reducts) of affine spaces. Here, affine spaces are
considered as Mal’tsev modes, as explained in the monographs [23,25]. In
particular, if 2 is invertible in R, an affine R-space may be considered as
the reduct (A,R) of an R-module (A,+, R), where R is the family of binary
operations

r : A2 → A; (x1, x2) �→ x1x2r = x1(1 − r) + x2r

for each r ∈ R. The class of all affine R-spaces is a variety [1], denoted by R.
If 2 is invertible in R, then the variety R is defined by the idempotent and
entropic laws, together with the trivial laws

xy0 = x, xy1 = y (2.3)
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and the affine laws
[xyp] [xyq] r = xy pqr (2.4)

for all p, q, r ∈ R.
An important class of subreducts of affine spaces is given by convex sets,

defined as subreducts of affine R-spaces. Convex sets are characterized as sub-
sets of a real affine space closed under the operations r of weighted means
taken from the open real unit interval I◦ = ]0, 1[. Thus a convex set contains,
along with any two of its points, the line segment joining them. The class
C of convex sets, considered as algebras (C, I◦), generates the variety B of
barycentric algebras, and forms a subquasivariety of B [17].

The definitions of convex sets and barycentric algebras may be readily
extended to the case of a subfield F of R, with its own unit interval I◦ = {s ∈
F | 0 < s < 1} [25, Chapters 5, 7]. For p, q ∈ I◦, set p′ := 1− p, and define the
dual product p ◦ q := (p′q′)′ = p + q − pq. Then the variety B of barycentric
algebras over F is defined by the identities

xx p = x (2.5)

of idempotence for each p in I◦, the identities

xy p = yx 1 − p (2.6)

of skew-commutativity for each p in I◦, and the identities

[xy p] z q = x [yz q/(p ◦ q)] p ◦ q (2.7)

of skew-associativity for each p, q in I◦ [25, Section 5.8]. It is worthy of note that
idempotence, skew-commutativity, and skew-associativity may all be construed
as hyperidentities of algebras (A, I◦) (in the sense of [16]).

As reducts of affine spaces, barycentric algebras are entropic. They com-
prise convex sets, so-called stammered semilattices where p = q for all p, q ∈ I◦,
and certain sums of convex sets over (stammered) semilattices.

Barycentric algebras may also be axiomatized as extended barycentric
algebras (A, I), where I is the closed unit interval {s ∈ F | 0 ≤ s ≤ 1} of F ,
with the operations 0 and 1 defined by

xy0 = x and xy1 = y (2.8)

as respective left and right projections. Note that skew-associativity in the
form (2.7) is then no longer a hyperidentity of (A, I), since 0 ◦ 0 = 0, and
q/(p ◦ q) is not defined for p = q = 0. The class B of extended barycentric
algebras is a variety, specified by the identities (2.5)–(2.7) defining B together
with the additional identities (2.8). For more information about barycentric
algebras, see [5,7,18,19,22,24,26,28,29].

3. Affine spaces and barycentric operations

We now extend the concept of a barycentric algebra by enlarging the set of
basic operations, (possibly) weakening the algebraic structure of that set, while
retaining as many key properties of barycentric algebras as possible. Since
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skew-associativity is essential to the definition of barycentric algebras [9], we
will discuss this identity in the more general setting of affine spaces.

We first introduce some operations defined on any field F , recalling that
division is not an operation in the sense of universal algebra. For p, q ∈ F , a
binary operation of implication is defined by

p → q =

{
1 if p = 0;
q/p otherwise.

(3.1)

When F is the two-element field GF(2) = {0, 1}, the implication (3.1) becomes
the usual Boolean implication, while the dual product p ◦ q becomes the usual
Boolean disjunction.

Consider the operation

� : F × F → F ; (p, q) �→ (p ◦ q → q) (3.2)

of (dual) division on the field F . Note that

p � q = p ◦ q → q =

{
1 if p ◦ q = 0;
q/(p ◦ q) = q/(p′q′)′ otherwise.

Another operation of interest is

� : F × F → F ; (p, q) �→ (p′ ◦ q′ → p′q). (3.3)

Note that

p � q = (p′ ◦ q′ → p′q) = (pq)′ → p′q =

{
1 if pq = 1;
p′q/(pq)′ otherwise.

If F is a subfield of R, and I◦ is the open unit interval of F , then for
p, q ∈ I◦ one has q < p ◦ q, whence q/(p ◦ q) ∈ I◦ and the skew-associativity
may be written as

xy p z q = x yz p ◦ q → q p ◦ q. (3.4)
or

xy p z q = x yz p � q p ◦ q. (3.5)
This form of skew-associativity will be called right skew-associativity. As shown
in [18], the identity also holds for all p, q in the closed unit interval I = [0, 1]
of F . In fact, it may be observed directly that the original skew-associativity
(2.7) holds if at least one of p, q is 1, and if precisely one of p, q is 0. The
only critical value of p and q is p = q = 0. The identities (2.5), (2.6), and
(3.4), together with (2.8), provide an axiomatization for extended barycentric
algebras.

Another form of skew-associativity for p, q ∈ I◦ is given by the identity

x yzp q = xy[(q − pq)/(1 − pq)] z pq , (3.6)

which may also be written as

x yzp q = xy[(1 − pq) → (q − pq)] z pq (3.7)

or
x yzp q = xy(p � q) z pq, (3.8)
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using (3.3). This form of skew-associativity will be described as left skew-
associativity. As in the case of right skew-associativity, it may be verified that
left skew-associativity holds for all s, t in the closed interval I. While for right
skew-associativity the only critical values of p, q were p = q = 0, in the present
case they are p = q = 1.

Lemma 3.1. Let A be a nontrivial affine F -space over a subfield F of R, and
let p, q ∈ F .
(a) A satisfies the right skew-associativity (3.5) iff p ◦ q �= 0 or p = q = 0.
(b) A satisfies the left skew-associativity (3.8) iff pq �= 1 or p = q = 1.

Proof. If p◦q �= 0, then the proof of the right skew-associativity (3.5) proceeds
as in the usual case p, q ∈ I◦ for barycentric algebras [25, §5.8]. If p = q = 0,
then the proof proceeds as discussed above for extended barycentric algebras
[18].

Conversely, suppose p ◦ q = 0 and (p, q) �= (0, 0). Note that q = 1 implies
q′ = 0 and p ◦ q = (p′q′)′ = 0′ = 1, so q �= 1 under the current assumptions,
and p = q/(q − 1). Since A is nontrivial, it contains distinct points a and b.
Then

[a bp] aq = [a b(q/(q − 1))] aq = ab(−q) .

On the other hand, (p ◦ q → q) = (0 → q) = 1 and

a [b a(p ◦ q → q)] p ◦ q = a [b a(0 → q)] 0 = a [b a 1] 0 = a a 0 = a .

Since q �= 0, we have abq �= a. It follows that the right skew-associativity does
not hold in this case. The treatment of the left skew-associativity is dual. �

The concluding observations of this section are concerned with other
relations between axioms of barycentric algebras over F and affine F -spaces.

Lemma 3.2. The affine identities 2.4, together with the trivial identities 2.3 of
affine F -spaces, imply skew-commutativity for all p ∈ F .

Proof. By the trivial and affine identities, yxp′ = [xy1] [xy0] p′ = xy 10p′ =
xyp. �

Lemma 3.3. If a skew-associativity is defined for some p and r in the field F ,
then it implies the affine law [xyp] [xyq] r = xy pqr for the same p, r and any
q ∈ F .

Proof. In the skew-associative law of the form [xy p] z r = x [yz r/(p ◦ r)] p ◦ r,
substitute xyq for z. Then

[xy p][xy q] r = x
[
y[xy q] r/(p ◦ r)

]
p ◦ r

= x(1 − p + pr − qr) + y(p − pr + qr) = xyp − pr + qr = xy pqr

as required. �

Corollary 3.4. Within extended barycentric algebras, the trivial and affine iden-
tities of affine F -spaces also hold for operators p, q, r ∈ I.
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4. Binary reducts of affine F -spaces

In this section, we consider affine F -spaces over a fixed subfield F of R, with
the open and closed unit intervals of F denoted respectively by I◦ and I.

Recall that a convex subset C of an affine F -space A is just a subreduct of
A with respect to the operations belonging to I◦. We will replace the interval
I◦ by an open interval ]q, q′[, where q is any member of F not exceeding 1/2,
and q′ = 1 − q. Then ]q, q′[ will denote the set of operations {r | r ∈ ]q, q′[}.

Definition 4.1. Let q ∈ F with q ≤ 1/2. A subalgebra
(
C, ]q, q′[

)
of the reduct(

A, ]q, q′[
)

of an affine F -space (A,F ) is called q-convex.

The subreducts of a given type of algebras in a given (quasi)variety form
a quasivariety [11, §11]. In particular, the class Cq of all q-convex subsets of
affine F -spaces is a quasivariety.

Definition 4.2. Let q ∈ F with q ≤ 1/2. Then the variety Bq generated by the
quasivariety Cq is called the variety of q-barycentric algebras.

Note that C0 is the quasivariety C of usual convex sets, and B0 is the
variety B of barycentric algebras. A special relationship between the quasi-
varieties Cq and the varieties Bq emerges from consequences of the following
general facts.

Let R be a subring of the ring R. Recall that, under the operations of
R, the affine R-space Rk (for k ∈ N) is the free algebra, in the variety R of
affine R-spaces, over a finite set X = {x0, . . . , xk} of free generators. The free
algebra is {

x0r0 + · · · + xkrk

∣∣∣∣ ri ∈ R,

k∑
i=0

ri = 1
}

.

[25, §6.3]. In particular, the line R is the free affine R-space on two free gen-
erators x0 = 0 and x1 = 1. Recall the following.

Proposition 4.3 [20]. Let R be a commutative, unital ring. Let Ω be a set of
affine combinations over R. Let ΩR be the quasivariety of Ω-subreducts of
affine R-spaces. Let J be the free ΩR-algebra on two generators.
(a) The free ΩR-algebra XΩR over a set X is isomorphic to the Ω-subreduct,

generated by X, of the free affine R-space XR.
(b) One has

XΩR =

{
x0a0 + . . . + xnan

∣∣∣∣ ai ∈ J,

n∑
i=0

ai = 1

}

for X = {x0, . . . , xn}.

Finite-dimensional simplices are free barycentric algebras. Furthermore,
the quasivariety Cq and the variety Bq have the same free algebras [11, §13].

Corollary 4.4. The free Bq-algebra over X is isomorphic to the ]q, q′[-sub-
reduct, generated by X, of the free affine F -space XF over X.
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Lemma 4.5. Suppose t ∈ F and −∞ < t < 0. Consider the line F under the
operations of [t, t′]. Then the interval [(t′)k−1t, (t′)k] is contained within the
subalgebra A of

(
F, [t, t′]

)
generated by {0, 1}.

Proof. The proof is by induction on k. First note that 01t = t and 01t′ = t′.
If t ≤ r ≤ t′, then t ≤ 01r ≤ t′. Hence [t, t′] ⊆ A. Now note that 0t′t = t′t and
0t′t′ = (t′)2, and if t ≤ r ≤ t′, then t′t ⊆ 0t′r ⊆ (t′)2. Hence [t′t, (t′)2] ⊆ A.
Note that t′t < t < t′ < (t′)2, and more generally

· · · < (t′)k−1t < · · · < t′t < t < t′ < (t′)2 < · · · < (t′)k < · · · .

Now assume that [(t′)k−1t, (t′)k] ⊆ A. Then, similarly as before, 0(t′)kt = (t′)kt
and 0(t′)kt′ = (t′)k+1, which implies that [(t′)kt, (t′)k+1] ⊆ A. �

Proposition 4.6. Let t ∈ F and −∞ < t < 0. Then under the operations of
[t, t′], the line F is generated by {0, 1}.

Proof. It suffices to note that F =
⋃∞

k=1[(t
′)k−1t, (t′)k]. �

Theorem 4.7. Let t ∈ F and −∞ < t < 0. Let n be a positive integer. Then
under the operations of [t, t′], each Fn is generated by the free generators of
the affine F -space Fn.

Proof. The inductive proof is similar to the proof of [9, Thm. 8.5], with sim-
plices Δn replaced by the affine F -spaces Fn, and the extreme points of the
simplices replaced by the free generators of the space Fn. For n = 1, the
theorem follows by Proposition 4.6. Now suppose that the result is true for a
positive dimension n. Consider the affine F -space Fn+1 with free generators
x0, x1, . . . , xn+1. It consists of all affine combinations of a subspace Fn gener-
ated by n+1 free generators of Fn+1, say by x0, x1, . . . , xn, and the generator
xn+1. Thus an arbitrary point x, which is not on a hyperplane Πn parallel to
Fn, lies on a line � going through a point p of Fn and the point xn+1. By
Proposition 4.6, the point x is generated under the operations of [t, t′] by p
and the generator xn+1. If a point x belongs to the hyperplane Πn, then it lies
on a line �′ going through a point y generated by some p of Fn and xn+1, and
a point q of Fn. As before, the line is generated by y and q. By induction, the
points p and q are generated under the operations of [t, t′] by free generators
of Fn, which of course are also free generators of Fn+1. Thus x is generated
under the operations of [t, t′] by the free generators of Fn+1. �

Corollary 4.8. Suppose q ∈ F with −∞ < q < 0. Then the variety Bq of
q-barycentric algebras and the variety F of affine F -spaces are equivalent.

Proof. Certainly, the ]q, q′[-reducts of affine F -spaces are Bq-algebras.
Now consider the variety Bq of q-barycentric algebras. By Proposition 4.6,

the operations of [t, t′], for each t with −∞ < q < t < 0, generate all the
operations of F , which are all the binary operations of affine F -spaces (and also
generate the Mal’tsev operation). As the variety Bq is generated by subalgebras
of the reducts (A, ]q, q′[) of affine F -spaces (A,F ), it follows that (under the
derived operations) these subalgebras are in fact also affine F -spaces. �
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Remark 4.9. Note that the variety Bq is defined by the affine space identities
applied to the binary operations derived from the convex combinations of
]q, q′[.

The following theorem shows that the classes of subreducts (C, ]q, q′[ ) of
affine F -spaces (A,F ) determined by subintervals ]q, q′[ of F symmetric with
respect to 1/2 generate precisely three types of varieties.

Theorem 4.10. Let q ∈ F with q ≤ 1/2. The following conditions hold:
(a) The variety Bq is equivalent to the variety CBM of commutative binary

modes for q = 1/2 ;
(b) The variety Bq is equivalent to the variety B of barycentric algebras for

0 ≤ q < 1/2 ;
(c) The variety Bq is equivalent to the variety F of affine F -spaces for q < 0.

Proof. The first two conditions follow by results of [9, §9]. If 0 ≤ q < 1/2,
then the variety Bq coincides with the variety Bt

mod of t-moderate barycen-
tric algebras of [9, §9], generated by [t, t′]-reducts of convex sets, and hence
is equivalent to the variety B [9, Prop. 9.3]. The third condition follows by
Corollary 4.8. �

Remark 4.11. Note that F is the union of all the intervals ]q, q′[ such that Bq

is equivalent to F , while I◦ is the union of all the intervals ]q, q′[ such that Bq

is equivalent to B. In fact, two varieties Bq1 and Bq2 are equivalent precisely if
either ]q1, q′

1[, ]q2, q′
2[⊃ I◦ or ]q1, q′

1[, ]q2, q′
2[⊆ I◦.

5. Threshold algebras

Threshold barycentric algebras were introduced by the authors in [9] as a
tool to analyze the axiomatization of barycentric algebras. We first recall the
definition. Take a fixed element t of the interval [0, 1/2] of R known as the
threshold. Then the full open real interval I◦ of binary barycentric operations
is replaced by the reduced set of barycentric operations indexed by the subin-
terval [t, 1 − t] ∩ I◦ of I◦, the so-called moderate operations, together with
so-called extreme operations: left projections indexed by elements of the inter-
val ]0, t[, and right projections indexed by elements of the interval ]1 − t, 1[.
Such operations are called threshold -t barycentric operations, and barycentric
algebras under these operations are called threshold -t barycentric algebras.

Threshold barycentric algebras offer an entire spectrum of algebras, rang-
ing from the usual barycentric algebras at one end (where t = 0) to the (ex-
tended) commutative binary modes at the other (for t = 1/2). Theorem 8.5
of [9] shows that for a threshold 0 < t < 1/2, finite-dimensional simplices
(free barycentric algebras) are also generated by their vertices under the basic
threshold-t barycentric operations. This implies that such threshold-t barycen-
tric algebras are equivalent to extended barycentric algebras.

In this section, we will extend the concepts of a threshold and threshold
barycentric algebras to threshold affine spaces. (The same could be done for
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the q-barycentric algebras of Definition 4.2. But since they are equivalent to
affine spaces anyway, it will suffice to consider affine spaces alone). First note
that the definitions and results of [9] remain true in the case of subfields of
the field R. As in the previous section, F will always denote a fixed subfield
of R, and I◦ and I will denote the respective open and closed unit intervals of
F . The following definition generalizes the concept of threshold convex set.

Definition 5.1. Set a threshold t, where t = −∞ or t ∈ F with t ≤ 1/2.
(a) For elements x, y of an affine F -space A, define

xy r =

⎧⎪⎨
⎪⎩

x if r < t;
xy r = x(1 − r) + yr if t ≤ r ≤ 1 − t;
y if r > 1 − t

(5.1)

for r ∈ F . Then the binary operations r are described as threshold -t affine
combinations.

(b) A threshold-t affine combination r is respectively defined to be small,
moderate, or large when r lies in the members ]−∞, t[, [t, 1−t], or ]1−t,∞[
of the partition

{
] − ∞, t[, [t, 1 − t], ]1 − t,∞[

}
of F . Together, small and

large threshold-t affine combinations are described as extreme.
(c) For a given threshold t, the algebra (A,F ), where F = {r | r ∈ F}, is

called a threshold -t affine F -space.

The following proposition holds as in the case of threshold barycentric
algebras [9, §4].

Proposition 5.2. Let t be a threshold. Let A be an affine F -space. Then under
the threshold-t affine combinations r for r ∈ F , the threshold-t affine F -space
(A,F ) is a mode satisfying skew-commutativity.

Definition 5.3. For a given threshold t, the class At of threshold -t affine F -
spaces is the variety generated by the class of affine F -spaces under the
threshold-t affine combinations of Definition 5.1.

By Definition 5.1, if the threshold t equals −∞, there are no extreme
operations, and the threshold-t affine combinations are just the usual affine
operations. In particular, the variety A = A−∞ of threshold-(−∞) affine F -
spaces is precisely the variety F of affine F -spaces.

Other special cases are obtained if t ∈ [0, 1/2]. If t = 1/2, then the
variety A1/2 of threshold-(1/2) affine F -spaces is equivalent to the variety
B1/2 of threshold-(1/2) barycentric algebras, and hence to the variety CBM
of extended commutative binary modes [9, §7].

If 0 < t < 1/2, then the variety At of threshold-t affine F -spaces is
equivalent to the variety Bt of threshold-t barycentric algebras, and hence to
the variety B of extended barycentric algebras [9, §6]. The variety A0 is also
equivalent to the variety B of extended barycentric algebras.

These observations may be summarized in the following classification
theorem.
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Theorem 5.4. Each variety of threshold affine F -spaces is equivalent to one of
the following classes:
(a) the variety F of affine F -spaces;
(b) the variety B of extended barycentric algebras; or
(c) the variety CBM of extended commutative binary modes.

Remark 5.5. Note that the addition of extreme operations to barycentric al-
gebras or affine spaces has no influence on their structure and basic algebraic
properties. Nevertheless, it has a major influence on their axiomatization, and
on the varieties they form. Recall that the regular identities that are satisfied
in an algebra or a class of algebras are those having the same set of variables
on each side. Adding extreme operations satisfying irregular identities to the
moderate operations as basic operations may violate the satisfaction of regu-
lar identities true in affine spaces or barycentric algebras. For example, as was
shown in [9], skew-associativity holds in threshold-t barycentric algebras only
if t = 0. Similarly, one may easily find instances of p, q, r ∈ F such that the
affine law (2.4), satisfied in all affine F -spaces, does not hold in a threshold-t
affine F -space.

Example 5.6. Consider F as a threshold-0 affine space (F, F ). Let p = 1/2,

q = 2 and r = 1/2. Then pqr = (1/2)(2)1/2 = 5/4. For x = 0, y = 1 in F ,
we have (01) pqr = (01)5/4 = 1. On the other hand [(01) p][(01) q] r = [(01)

(1/2)] [(01)(2)] 1/2 = 1/4 + 1/2 = 3/4.

The regularization of a given variety is the variety that is defined by the
regular identities holding in the given variety. The regularization of a regular
variety is that same variety. Since the variety B = B0 of barycentric algebras
is regular, its regularization B̃ coincides with B. On the other hand, if t �= 0,
then threshold-t barycentric algebras form a (strongly) irregular variety Bt. Its
regularization B̃t, consisting of P�lonka sums of Bt-algebras, does not coincide
with Bt.

Note that the variety A = F may also be defined as the variety of skew-
commutative modes, of the type of F -algebras, satisfying the trivial identities
(2.3), the affine identities (2.4), and the binary Mal’tsev identities

x[xy2−1]2 = y = x[yx2−1]2. (5.2)

Definition 5.7. For t ∈ F with t ≤ 1/2, let At
mod be the variety generated by

the reducts
(
A, [t, t′]

)
of threshold-t affine F -spaces with respect to moderate

threshold combinations. Members of At
mod are said to be t-moderate affine F -

spaces.

The variety A0
mod coincides with the variety B of extended barycentric

algebras, and A1/2
mod coincides with the variety CBM of commutative binary

modes. By Theorem 4.3, the free At
mod-algebra over X is isomorphic to the

[t, t′]-subreduct, generated by X, of the free affine F -space XF . Moreover
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if t > 0, then by [9, Thm. 8.1], the free At
mod-algebra is equivalent to the

free barycentric algebra XB over X, and if t < 0, then by Theorem 4.7, it
is equivalent to the free affine F -space XF over X. The following corollary
extends Theorem 9.5 of [9].

Corollary 5.8. Let −∞ < t < 1/2. Then the variety At of threshold-t affine
F -spaces is defined by the following identities:
(a) Idempotence, skew-commutativity and entropicity for all operations of F ;
(b) The identity xy r = x for each small operation r;
(c) The identity xy r = y for each large operation r; and
(d) Skew-associativity for the (derived) binary operations that are generated

by the moderate operations in the case when t > 0, and the trivial, affine
and binary Mal’tsev identities for (derived) binary operations generated
by the moderate operations in the case t < 0.

Remark 5.9. Both threshold barycentric algebras and threshold affine spaces
fall into the following more general scheme, which may be interesting in its
own right, even though we currently have no further examples.

Consider a variety V of Ω-algebras such that Ω is the disjoint union
Ω1∪Ω2 of Ω1 and Ω2, and, by composition, the Ω2-operations generate the Ω1-
operations. Let W be the variety generated by the Ω2-subreducts of V-algebras.
We additionally assume that free algebras in both varieties generated by the
same set of generators are the same. Then the varieties V and W are equivalent.
Now replace each (n-ary) operation ω in Ω1 by some trivial operation ω, where
x1 . . . xnω = xi for a fixed i depending on ω. Denote the set of such operations
ω by Ω1. Let Ω be the disjoint sum of Ω1 and Ω2. Call the resulting algebras
(A,Ω) threshold V-algebras, and denote the variety they form by VT . Then,
as in the case of threshold barycentric algebras and affine spaces:
(a) Each VT -algebra (A,Ω) is equivalent to the algebra (A,Ω,Ω1) obtained

from (A,Ω) by adding trivial operations Ω1.
(b) The variety VT is defined by the trivial identities that are satisfied by the

operations Ω1, and all the V-identities satisfied by the derived operations
generated by the operations of Ω2.

6. Varieties of threshold algebras

Meets and joins of varieties At of threshold affine F -spaces may be described
using methods similar to those employed for threshold barycentric algebras
in [9] (noting the correction of [9, Th. 12.6] originally provided in [10], and
discussed below following the proof of Theorem 6.4).

Recall that for 0 ≤ t < 1/2, the varieties At are equivalent to the variety
B of extended barycentric algebras, and for −∞ < t < 0, they are equivalent to
the variety A of affine F -spaces. If 0 < t < 1/2, then the variety At contains as
a unique non-trivial subvariety the variety St of extended semilattices, where
all operations from [t, t′] are equal and associative, and the extreme operations

reduce to one left and one right projection. For t < 0, the varieties At have
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no non-trivial subvarieties. The proof of the following is similar to the proof
of [9, Th. 12.3].

Proposition 6.1. For distinct thresholds s, t, the meet Bs ∧ Bt is the variety T
of trivial algebras.

We now consider joins of varieties At. First, we will define the varieties
SCt, in a similar way as in [9, §11], but this time for all elements t of the
field F . This means that SCt is the variety, of the type of F -algebras, defined
by the identities of idempotence, skew-commutativity and entropicity for all
operations of F , along with left-zero identities for all operations p with p < t

and right-zero identities for all operations p with t′ < p. Each variety At is

a subvariety of SCt. In a variety SCt, each word may be reduced, using the
left-zero and right-zero identities and skew-commutativity, to its reduced form
wt without extreme operations, and containing only moderate operations r

belonging to [t, t′]. It follows that each identity w = v satisfied in At may

be written in its reduced form wt = vt, only containing symbols of moderate
operations, and satisfied in the variety At

mod.

Definition 6.2. Let s, t ∈ F ∪ {−∞}. Set thresholds −∞ ≤ s < t ≤ 1/2. Let
As,t be the variety of idempotent, entropic, skew-commutative algebras, of the
same type as F -algebras, defined by the following identities:
(1) xy p = x for all p < s ;
(2) xy p = y for all p > s′ ;
(3) all identities true in the variety At

mod of Definition 5.7.
Let Ids,t be the set of identities w = v that hold in As

mod, with all operation
symbols p belonging to [s, t[ or ]t′, s′]. Let As,t be the subvariety of As,t defined

by all the identities w = v of Ids,t, such that in At both sides of the identity
are equal to the same variable.

Remark 6.3. Note that there are identities in Ids,t which are not satisfied in
the variety At. Examples are provided by some of the skew-associativity laws
(2.7) satisfied in As. If s < p, q < t and p◦q, q/(p◦q) ∈ ]t′, s′[, then the identity
(2.7) is satisfied in As, while in At

[xy p] z q = x and x [yz q/(p ◦ q)] p ◦ q = z.

Take for example s = 1/8 < p = q = 3/8 < 31/64 = t. Then p ◦ q = 39/64 and
q/(p ◦ q) = 8/13 both belong to ]33/64, 7/8[= ]t′, s′[.

Theorem 6.4. Let s, t ∈ F ∪ {−∞}. If −∞ ≤ s < t ≤ 1/2, then the join
As ∨ At of the varieties As and At is equal to the variety As,t.

Proof. For r < 1/2, each Ar-algebra satisfies the identities xy p = x for all
small operations p, the identities xy p = y for all large operations p, and all
identities true in Au

mod, for u ≥ r, that only involve moderate operations. Since
s < t, it follows by Definition 6.2 that any identity true in As,t is satisfied in
both the varieties As and At, and the same holds for the identities defining the
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subvariety As,t. Hence each identity true in As,t holds in As∨At. Consequently,
As ∨ At ≤ As,t.

Conversely, we will show that each identity true in both As and At (and
hence in As ∨ At) is also satisfied in As,t. First note that all left-zero and all
right-zero identities true in As also hold in As ∨ At, and in As,t.

Now let
w = v (6.1)

be an identity satisfied in As ∨ At containing some operation symbols p for
s ≤ p ≤ s′.

Suppose that all the operation symbols appearing in (6.1) belong to [t, t′].

Then the identity is satisfied by all the At-algebras, and hence by all the
At

mod-algebras. Consequently, it holds in all As,t-algebras, and hence in all
As,t-algebras.

Now let (6.1) be an identity, true in the variety As, that contains both
extreme and moderate operations in the type of As-algebras. Then by [9, §11],
the identity is equivalent to the identity ws = vs true in As

mod containing only
operation symbols from [s, s′].

Now assume that (6.1) contains operation symbols p only in the range
s ≤ p ≤ s′, with some of the p in the set [s, t[ ∪ ]t′, s′]. The identity also holds

in the variety At precisely in two cases: either all its operation symbols belong
to [s, t[∪ ]t′, s′], and then both sides are equal to the same variable, or there are
operation symbols in (6.1) belonging to [t, t′], and then the identity reduces to

the identity wt = vt true in At
mod. It follows that the identities true in both

As and At satisfy the conditions of Definition 6.2. Hence they hold in As,t,
and As,t ≤ As ∨ At. �

Note that a small change in Definition 6.2 and Theorem 6.4 will provide
a correction to Theorem 12.6 of [9], where one case was lost [10]. It is sufficient
to assume that F = R and 0 ≤ s < t ≤ 1/2. Recall that in this case the
varieties At and Bt are equivalent.

Note that the variety As,t is a proper subvariety of the variety As,t. This
is shown by Example 6.5 below. First observe that the algebra (F, F ), with
appropriately defined operations, may be considered as a member of each of
the varieties At and As,t. As a member F t of At, it satisfies the identities that
define At, and as a member F s,t of As,t , it satisfies the identities that define
As,t.

Example 6.5. Let −∞ < s < 1/5 and 2/5 < t < 1/2. Let p = 1/4 and q = 1/5.
Then p ◦ q = 2/5 and q/(p ◦ q) = 1/2. Since s < p, q, p ◦ q < t, it follows that
the variety As satisfies skew-associativity for p = 1/4 and q = 1/5. On the
other hand, the same identity holds in At, since in this case both of its sides
are equal to x. It follows that the identity holds in As,t.

Now consider the algebra F s,t but satisfying additionally the following
conditions: xy1/5 = y and xy2/5 = x, and moreover xy4/5 = x and xy3/5 = y.

It is easy to see that this algebra is a member of As,t. However, it does not



Barycentric algebras and beyond Page 15 of 17    20 

belong to As,t. The left-hand side of skew-associativity for p = 1/4 and q = 1/5
equals z, whereas the right-hand side equals x.

The following example indicates some relations between the variety A =
A−∞ = F of affine F -spaces and the variety A0 equivalent to the variety B of
extended barycentric algebras.

Example 6.6. Note that the varieties A, A0, S0, the trivial variety T and the
variety A−∞,0 form a lattice isomorphic to N5. The variety A−∞,0 satisfies
all identities of A0

mod, in particular all the identities defining the variety B
of barycentric algebras (since affine spaces satisfy all of them), then all the
identities true in affine F -spaces which in A0-algebras have both sides equal
to the same variable. Among them are some (but not all) skew-associative
identities, and some affine identities containing only operation symbols p for
p < 0 or p > 1. No binary Mal’tsev identities are satisfied in A−∞,0.
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