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Abstract. Quantum quasigroups provide a self-dual framework for the
unification of quasigroups and Hopf algebras. This paper furthers the
transfer program, investigating extensions to quantum quasigroups of
various algebraic features of quasigroups and Hopf algebras. Part of the
difficulty of the transfer program is the fact that there is no standard
model-theoretic procedure for accommodating the coalgebraic aspects
of quantum quasigroups. The linear quantum quasigroups, which live
in categories of modules under the direct sum, are a notable exception.
They form one of the central themes of the paper.

From the theory of Hopf algebras, we transfer the study of grouplike
and setlike elements, which form separate concepts in quantum quasi-
groups. From quasigroups, we transfer the study of conjugate quasi-
groups, which reflect the triality symmetry of the language of quasi-
groups. In particular, we construct conjugates of cocommutative Hopf
algebras. Semisymmetry, Mendelsohn, and distributivity properties are
formulated for quantum quasigroups. We classify distributive linear
quantum quasigroups that furnish solutions to the quantum Yang-Baxter
equation. The transfer of semisymmetry is designed to prepare for a
quantization of web geometry.

1. Introduction and background

1.1. Introduction. In any symmetric, monoidal category, quantum quasi-
groups provide natural self-dual generalizations of Hopf algebras, without
requirements of unitality, counitality, associativity, or coassociativity. They
embrace diverse phenomena such as octonion multiplication, function spaces
on the 7-sphere, new solutions to the quantum Yang-Baxter equation, and
the combinatorial structures of quasigroups and Latin squares.

One of the main programs in the study of quantum quasigroups involves
the transfer to them of various model-theoretic aspects such as quasigroup
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identities. The transfer would be routine if it were the case that quantum
quasigroups only involved algebraic structure, but the parallel coalgebraic
structure makes the transfer non-trivial in general. Nevertheless, here, we
identify linear quantum quasigroups, and particularly quantum quasigroups
in symmetric monoidal categories of finitely generated modules under the
direct sum, as targets for a more amenable transfer of identities and model-
theoretic properties.

Quasigroups and Latin squares have a rich equational theory, endowed
with a triality symmetry or S3-action that corresponds to interchanges of
the respective roles of row labels, column labels, and body labels in a Latin
square. The current paper initiates an extension of the concept of triality
symmetry to quantum quasigroups (§4). But just as the group-theoretic
concept of an inverse, which provides an exact left/right duality for groups,
in a Hopf algebra becomes the antipode which need not be involutory, or
even invertible, so we find that the triality of quasigroups may break down
in quantum quasigroups. Nevertheless, Theorems 4.8 and 6.4 respectively
show that it works to a certain degree for cocommutative Hopf algebras,
and very well for linear quantum quasigroups.

The equationally defined class of semisymmetric quasigroups is especially
important from many points of view. Within the triality symmetry, its
defining equations are invariant under the alternating group A3. In fact,
there are equivalent left- and right-handed defining equations. Following
the general approach used on Moufang identities in [1], we propose left-
and right-handed versions of semisymmetry for quantum quasigroups in
this paper (§5.2). Theorem 5.9 establishes the independence of these two
versions of semisymmetry in categories of vector spaces under the direct
sum, even though the two versions are equivalent in the category of sets
under the direct product.

Idempotent semisymmetric quasigroups are equivalent to combinatorial
designs known as Mendelsohn triple systems. Combining an earlier notion
of quantum idempotence [8, 28] with our new concepts of semisymmetry, we
obtain left- and right-handed versions of a Mendelsohn property applying
to quantum quasigroups. In contrast with the situation of Theorem 5.9,
Theorems 6.4 and 7.1 show that these two versions coincide respectively in
categories of modules under the direct sum, and for linear quantum quasi-
groups. Theorem 6.8 classifies Mendelsohn linear quantum quasigroups in
terms of an automorphism µ of the underlying module.

Earlier work [28, 29] identified quantum quasigroup properties, that are
known under the name of quantum distributivity (in both left- and right-
handed versions), which produce solutions of the quantum Yang-Baxter
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equation. Theorem 8.8 classifies the linear Mendelsohn quantum quasi-
groups that are quantum distributive, in terms of an equation (8.7) that
has to be satisfied by the automorphism µ of Theorem 6.8.

1.2. Quantum quasigroups unify quasigroups and Hopf algebras.
Cancellativity properties of groups have been extended in two directions:
using linearization or “quantization” to yield Hopf algebras [13, 23], or by
relaxation of the associativity requirement to obtain quasigroups [24]. A
quasigroup (Q, ·, /, \) is a set Q equipped with respective binary operations
of multiplication, right division and left division, such that the identities

(1.1)
(SL) x · (x\z) = z , (SR) z = (z/x) · x ,
(IL) x\(x · z) = z , (IR) z = (z · x)/x

are satisfied. Nonempty quasigroups with associative multiplication are
groups, with x/y = xy−1 and x\y = x−1y. On the other hand, within
a symmetric monoidal category (V,⊗,1), say a category of vector spaces
with the tensor product, or the category of sets with the direct product, a
Hopf algebra (A,∇, η,∆, ε, S) embraces (linearized) monoid (A,∇, η) and
comonoid (A,∆, ε) structures that are mutually homomorphic. Then the
cancellativity is captured by the antipode S : A → A, which is an inverse
to the identity 1A : A→ A in the convolution monoid

(
V(A,A), ∗, εη

)
with

product f ∗g = ∆(f⊗g)∇, as in (2.4) below.1 A group (Q, ·, e, −1) is a Hopf
algebra in the category of sets under direct product, with multiplication
∇ : x⊗y 7→ x ·y (using the tensor product symbol for ordered pairs), trivial
subgroup 1η = {e}, diagonal comuliplication ∆: x 7→ x⊗ x, and inversion
S : x 7→ x−1.

Quantum quasigroups were introduced to provide a self-dual unification
of quasigroups and Hopf algebras [27]. In a symmetric monoidal category
(V,⊗,1), a quantum quasigroup (A,∇,∆) is an object A, equipped with
multiplication ∇ : A⊗A→ A and comultiplication ∆: A→ A⊗A that are
mutually homomorphic, where the left composite

(1.2) G : A⊗ A ∆⊗1A // A⊗ A⊗ A 1A⊗∇ // A⊗ A
(“G” for “Gauche”) and the right composite

(1.3) a : A⊗ A 1A⊗∆ // A⊗ A⊗ A ∇⊗1A // A⊗ A
(“a” for “Droite”) morphisms are invertible. Quasigroups (equipped with
diagonal comultiplication) are quantum quasigroups in the category of sets
[11], while any Hopf algebra (A,∇, η,∆, ε, S) reduces to a quantum quasi-
group (A,∇,∆). Previously studied nonassociative generalizations of Hopf

1Throughout the paper, we default to algebraic notation, with functions to the right
of their arguments, and composing morphisms in natural reading order from left to right.
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algebras, including the Hopf quasigroups of Majid et al., also reduce to
quantum quasigroups [1, 3, 14, 15, 22]. However, these earlier concepts are
not self-dual. Moreover, since they are all based on the use of an antipode,
they really ought to be considered as linearizations of inverse property loops
(as in Definition 5.4 below), rather than quasigroups as such. Nevertheless,
since the term “Hopf quasigroup” is already in use, the term “quantum
quasigroup” has been adopted for the general concept.

1.3. Algebraic and coalgebraic properties of quantum quasigroups.
The current paper forms part of a central program within the study of
quantum quasigroups: the transfer to them of various algebraic properties
of quasigroups. For example, the quasigroup-theoretic property of (self)-
distributivity transfers to quantum distributivity, where the composites of
the quantum quasigroup are required to satisfy the quantum Yang-Baxter
equation (QYBE) [28, 29] — compare §8.1 below. Various quantum quasi-
groups thus provide new solutions to the QYBE. As noted above, the Hopf
quasigroups studied by Majid et al. transfer inverse property loops to the
quantum setting, while the Hopf algebras with triality of Benkart et al.
transfer Moufang loops to the quantum setting [1]. The diversity of these
examples already hints at the inherent difficulty of the transfer program:
the interplay of algebraic and coalgebraic structure in quantum quasigroups
mean that, in general, there is no standard model-theoretic procedure for
transferring quasigroup properties to quantum quasigroup properties.

Nevertheless, there is one important case where the coalgebraic aspects
of quantum quasigroups may be suppressed. This is the so-called linear
case, where the underlying symmetric monoidal category is taken to be a
category of modules over a commutative, unital ring, but under direct sums
(with the zero module as the monoidal unit), rather that under the tensor
product (with the module reduct of the ring as monoidal unit). Since it
is the tensor product that provides entanglement, the linear case is not of
direct interest for applications to the study of quantum processes. From
the theoretical point of view, however, the bug becomes a feature. Thus
the linear case provides an amenable proving ground for the exploration of
various aspects of quantum quasigroups. Here bimagmas, namely objects
carrying mutually homomorphic multiplications and comultiplications, just
correspond to bimodules (as discussed in §3.4 below). In the linear case,
the coalgebraic structure is actually algebraic.

Since quantum quasigroups provide a unification of quasigroups and Hopf
algebras, a parallel program seeks algebraic properties of quantum quasi-
groups that correspond to diverse aspects of the theory of Hopf algebras.
In this paper, attention is focused for the first time on grouplike and setlike
elements of quantum quasigroups, as in §3.1 below. While the two concepts



QUANTUM QUASIGROUPS 5

are usually conflated in the study of Hopf algebras, they are separated in
the study of quantum quasigroups.

In the opposite direction, we reverse the information flow from quantum
quasigroups to Hopf algebras. First, quasigroup conjugacy, which reflects
the triality or S3-symmetry of the theory of quasigroups, is transferred from
quasigroups to quantum quasigroups in §4.2. Then, §4.4 examines how
quantum quasigroup conjugacy appears in the context of cocommutative
Hopf algebras.

1.4. Plan of the paper. The paper begins with a brief reprise in Section 2,
particularly for the benefit of readers more familiar with quasigroups from
the combinatorial side, of the key aspects of symmetric monoidal categories
that underlie Hopf algebras and quantum quasigroups. In particular, we
draw attention to our special version ∆: x 7→ xL ⊗ yR of the Sweedler
comultiplication notation, adapted to the situation where coassociativity is
not necessarily required, and to our use of Jay-type set-theoretical notation
[12] within symmetric monoidal categories.

Section 3 initiates the study of grouplike and setlike elements in quantum
quasigroups, within categories of modules under the tensor product or the
direct sum. Theorem 3.4 establishes that the set of grouplike elements of a
quantum quasigroup in a category of vector spaces under the tensor product
actually forms a quasigroup. Attention then turns to categories of modules
under the direct sum. As previously noted, §3.4 shows that bimagmas
are equivalent to certain bimodules in this setting, namely over algebras
that are generated respectively by endomorphisms L,R as appearing in our
Sweedler notation for the comultiplication, and endomorphisms ρ, λ that
represent multiplication by 0 on the right or on the left.

In §3.5 one of the central topics of the paper, a linear quantum quasigroup
A(ρ, λ, L,R), is defined as a bimodule where the endomorphisms ρ, λ, L,R
are all invertible. Linear quantum quasigroups form quantum quasigroups
in categories of modules under the direct sum. Conversely, in categories of
finitely generated modules (under the direct sum), quantum quasigroups are
linear quantum quasigroups (as noted in Theorem 3.14). Setlike elements of
linear quantum quasigroups are then examined in §3.6. Section 3 concludes
with a brief study of the adjunction connecting linear quasigroups and linear
quantum quasigroups.

If (Q, ·, /, \) is a quasigroup with a given multiplication (x, y) 7→ x · y,
then further quasigroup structures on the set Q are furnished by taking
right division (x, y) 7→ x/y or left division (x, y) 7→ x\y as multiplications.
Additional quasigroup structures on the setQ take the opposite (x, y) 7→ y·x
of the original multiplication, or the opposites (x, y) 7→ y/x or (x, y) 7→ y\x
of the original divisions, as the multiplication. These six quasigroups are
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known as conjugates or “parastrophes” [24, §1.3]. Section 4 of the current
paper presents the analogous notion — quantum conjugates — for quantum
quasigroups (Definition 4.2). Quantum conjugates of cocommutative Hopf
algebras are described in §4.4, while §4.5 examines quantum conjugates of
linear quantum quasigroups.

A magma is described as (left) semisymmetric if it satisfies (xy)x = y,
and (right) semisymmetric if it satisfies x(yx) = y. The two properties
are equivalent, each implying that the magma is a quasigroup [24, §1.4].
Semisymmetry plays an important role in the theory of quasigroups, most
particularly in the application to web geometry [25]. Thus transfer of
semisymmetry to quantum quasigroups becomes fundamental for the task
of quantizing web geometry.

Section 5 presents one approach to the transfer of semisymmetry to
bimagmas (A,∇,∆, ε) that are equipped with an augmentation morphism
ε : A→ 1 in a symmetric monoidal category (V,⊗,1). The semisymmetry
concepts (see Definition 5.3) are quite direct, requiring just one level of co-
multiplication. Typical examples of semisymmetric quantum quasigroups in
our sense are provided by commutative inverse property loops (for example,
commutative Moufang loops), as shown by Theorem 5.7. In general, the
left and right-handed semisymmetry properties are not equivalent, and do
not entail that a bimagma becomes a quantum quasigroup (Theorem 5.9).
Exhibited in a category of vector spaces under the direct sum, this behavior
is contrasted with the case of counital bimagmas in the category of sets
(§5.5), where the two semisymmetry conditions are equivalent, and force
the bimagma to be a quantum quasigroup.

Idempotent semisymmetric quasigroups are equivalent to combinatorial
designs known as Mendelsohn triple systems, covered by oriented cycles
of three elements [5, 6, 20]. Section 6 transfers the Mendelsohn property
to quantum quasigroups, combining the quantum idempotence property
[28, Defn. 5.1] (originally introduced in [8] under a different name) with
the semisymmetry properties from the previous section. In the presence
of quantum idempotence, the left and right semisymmetry properties turn
out to be equivalent in the linear setting, and to induce the structure of
a linear quantum quasigroup (Theorem 6.4). Linear Mendelsohn quantum
quasigroups A(ρ, λ, L,R) are constructed and classified (§6.3). They are
fully parametrized by a single automorphism (Theorem 6.8). Section 6
concludes with a brief discussion of setlike elements in linear Mendelsohn
quantum quasigroups.

Section 7 studies the semisymmetry of linear quantum quasigroups. In
this context, left and right semisymmetry are equivalent (Theorem 7.1). The
semisymmetrization process, constructing a semisymmetric quasigroup from
an arbitrary quasigroup [25], is transferred to the setting of linear quantum
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quasigroups in §7.2. A similar process, constructing a linear Mendelsohn
quasigroup or triple system from an arbitrary linear quantum quasigroup,
is exhibited in §7.3.

A bimagma is said to be quantum left (or right) distributive whenever its
left (or right) composite solves the quantum Yang-Baxter equation (§8.1).
Section 8 investigates those linear quantum quasigroups that are quantum
distributive. The left and right quantum distributivity conditions turn out
to be equivalent in this setting (Theorem 8.5), yielding a linear quantum
distributive quasigroup. These objects are classified by Theorem 8.7. Those
with the Mendelsohn property are analyzed in §8.4. The parametrizing
endomorphism from Theorem 6.8 satisfies the quartic equation (8.7) in this
case.

2. Structures in symmetric monoidal categories

The general setting for the work of this paper is a (strict) symmetric
monoidal category (V,⊗,1), with a symmetry τ : A ⊗ B → B ⊗ A for
objects A and B. Primary examples are as follows:

• The category (K,⊗, K) of vector spaces over a field K, under the
tensor product;
• The category (S,⊗, S) of modules over a commutative, unital ring
S, under the tensor product, with the module reduct of the ring as
the monoidal unit;
• The category (S,⊕, S) of modules over a commutative, unital ring
S, under the direct sum, with the zero module as the monoidal unit;
• The category (Set,×,>) of sets under the cartesian product, with

the terminal object > (a singleton set) as the monoidal unit. In this
case it is often convenient to write the cartesian product as a tensor
product, and to write x⊗ y for an ordered pair (x, y).

This section records some basic definitions applying to objects A in V.
While these definitions are bread-and-butter for Hopf algebra experts, they
may be less familiar to other algebraists. Following the lead of Jay [12], we
often use a concrete, set-theoretical notation to record computations in a
symmetric monoidal category, much as the Yoneda lemma is used to justify
a set-theoretical notation in general categories.

Extending the concept of a magma (A,∇ : A ⊗ A → A) in the category
of sets, we have magmas (A,∇ : A⊗A→ A) in (V,⊗,1). Dually, we have
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comagmas (A,∆: A→ A⊗A) in (V,⊗,1). Consider the bimagma diagram

(2.1) A
∆

))SSSSSSSSSSSSSSSSS

A⊗ A

∆⊗∆

��

∇
55kkkkkkkkkkkkkkkkk

**TTTTTTTTTTTTTTTTTT A⊗ A

A⊗ A⊗ A⊗ A
1A⊗τ⊗1A

//

44jjjjjjjjjjjjjjjjjj
A⊗ A⊗ A⊗ A

∇⊗∇

OO

in the category V, the biunital diagram

(2.2) 1⊗ 1
∇ // 1 1

η
����������

∆ // 1⊗ 1

η⊗η
��

A⊗ A ∇ //

ε⊗ε

OO

A
∆ //

ε

__>>>>>>>>

A⊗ A

in the category V, and the antipode diagram

(2.3) A⊗ A S⊗1A // A⊗ A

∇

��66666666666666

A
ε //

∆

CC��������������

∆

��66666666666666 1 η
// A

A⊗ A
1A⊗S

// A⊗ A

∇

CC��������������

in the category V, all of which are commutative diagrams.

Definition 2.1. Consider a symmetric, monoidal category (V,⊗,1).

(a) A bimagma (A,∇,∆) is an object A carrying a magma structure
(A,∇) and a comagma structure (A,∆), such that the bimagma
diagram (2.1) commutes.

(b) A unital magma (A,∇, η) is a magma (A,∇) with a unit morphism
η : A→ 1, such that the left hand trapezoid of the biunital diagram
(2.2) commutes.
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(b) Dually, a counital comagma (A,∆, ε) is a comagma (A,∆) with a
counit morphism ε : 1 → A, such that the right hand trapezoid of
the biunital diagram (2.2) commutes.

A monoid (A,∇, η) in (V,⊗,1) is an associative unital magma. Dually, a
comonoid (A,∆, ε) in (V,⊗,1) is a coassociative counital magma. Suppose
that (A,∇, η,∆, ε) is a bimagma for which the biunital diagram commutes,
with monoid and comonoid structures (A,∇, η) and (A,∆, ε). Then the
antipode diagram (2.3) records that a morphism S : A → A is the inverse
of εη : A→ A in the convolution monoid

(
V(A,A), ∗, εη

)
with

(2.4) f ∗ g := ∆(f ⊗ g)∇

for f, g ∈ V(A,A) [13, Prop. III.3.1]. Note that we write M∗ for the group
of units of a monoid (in the category of sets). Thus for the endomorphism
monoid V(A,A) of an object A in a (locally small) category V, we write
V(A,A)∗ for the automorphism group of A in V.

Remark 2.2. (a) Commuting of the bimagma diagram (2.1) in a bimagma
(A,∇,∆) means that

∆: (A,∇)→
(
A⊗ A, (1A ⊗ τ ⊗ 1A)(∇⊗∇)

)
is a magma homomorphism (commuting of the upper-left solid and dotted
quadrilateral), or equivalently, that

∇ :
(
A⊗ A, (∆⊗∆)(1A ⊗ τ ⊗ 1A)

)
→ (A,∆)

is a comagma homomorphism (equivalent to commuting of the upper-right
solid and dotted quadrilateral).

(b) A comagma comultiplication on A is often denoted by a version of
Sweedler notation adapted to the general noncoassociative situation, namely
a∆ = aL ⊗ aR. Note that, in concrete notation, coassociativity then takes
the form

(2.5) xLL ⊗ xLR ⊗ xR = xL ⊗ xRL ⊗ xRR

for an element x of A. Given coassociativity, the classical Sweedler notation
is recovered by replacing the superscripts, when taken in lexicographic order,
by successive subscript numbers. For example, each side of (2.5) is then
written as x1 ⊗ x2 ⊗ x3.

(c) Magma multiplications on an object A of a monoidal category are often
denoted concretely by juxtaposition, namely (x ⊗ y)∇ = xy, or with x · y
as an infix notation, for elements x, y of A. The infix · binds less strongly
than the juxtaposition.
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(d) With the notations of (b) and (c), commuting of the bimagma diagram
(2.1) in a bimagma (A,∇,∆) amounts to

(2.6) xLyL ⊗ xRyR = (xy)L ⊗ (xy)R

for x, y in A.

3. Grouplike and setlike elements

3.1. Grouplike and setlike elements of comagmas. Suppose that S is
the category of modules over a commutative, unital ring S. Let (S,�,1)
denote one of the two symmetric monoidal category structures (S,⊕, {0})
or (S,⊗, S) on S.

Definition 3.1. Let (A,∆) be a comagma within the symmetric monoidal
category (S,�,1).

(a) An element q of A is grouplike if q 6= 0 and ∆: q → q � q.
(a) An element q of A is setlike if ∆: q → q � q.
(b) Write A1 for the set of grouplike elements of A.
(c) Write A0

1 for the set of setlike elements of A.

Lemma 3.2. Suppose that (A,∇,∆) is a bimagma in (S,�,1).

(a) The set A0
1 forms a subbimagma (A0

1,∇,∆) of (A,∇,∆).
(b) With ∇ : q1 � q2 7→ q1 · q2, the set A0

1 forms a magma (A0
1, ·).

Proof. Consider q1, q2 in A0
1. The commuting of the bimagma diagram (2.1)

yields

(q1 · q2)∆ = (q1∆ � q2∆)∇ = (q1 � q1) � (q2 � q2)∇ = (q1 · q2) � (q1 · q2) ,

so that q1 · q2 lies in A0
1. Then since 0∆ = 0 = 0 � 0 and q1∆ = q1 � q1 for

q1 6= 0, the comagma (A,∆) contains (A0
1,∆) as a subcomagma. �

3.2. Grouplike elements over fields. Now letK be a field. The following
result is adapted from [23, Lemma 2.1.12] by removing any reference to a
counit.

Lemma 3.3. If (A,∆) is a comagma in (K,⊗, K), the set A1 of grouplike
elements is linearly independent.

Proof. Suppose that A1 is not linearly independent, so there is a dependency
relationship

(3.1) h0q0 + h1q1 + . . .+ hrqr = 0

between r + 1 distinct elements q0, q1, . . . , qr of A1, with nonzero scalars
hi ∈ K. Suppose that r is minimal among all such dependency relationships.
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Note that r is positive, since 0 does not lie in A1, and that {q1, . . . , qr} is
linearly independent. The relationship (3.1) may be rewritten as

q0 = k1q1 + . . .+ krqr

with nonzero scalars ki ∈ K.
Since q0 is grouplike, the tensor rank of q∆

0 = q0 ⊗ q0 is 1. On the other
hand,

q∆
0 = (k1q1 + . . .+ krqr)

∆ = k1q1 ⊗ q1 + . . .+ krqr ⊗ qr ,
so the tensor rank of q∆

0 = q0⊗q0 is r by [23, Lemma 1.2.2], since {q1, . . . , qr}
is linearly independent. Thus r = 1 and q0 = k1q1. Then

k1q
∆
1 = (k1q1)∆ = q∆

0 = q0 ⊗ q0 = (k1q1)⊗ (k1q1) = k2
1q

∆
1 .

Since q∆
1 6= 0, we have k1 = k2

1, so k1 is one of the two roots 0, 1 of the
quadratic X2 − X = 0. However, q0 = k1q1 is nonzero, so k1 = 1 and
q0 = q1. This contradicts the distinctness of the elements q0, q1, . . . , qr. �

3.3. Grouplike elements in quantum quasigroups over fields.

Theorem 3.4. Let K be a field. Let (A,∇,∆) be a quantum quasigroup in
the symmetric monoidal category (K,⊗, K) of vector spaces over K. Then
the set A1 of grouplike elements forms a combinatorial quasigroup (A1, ·).

Proof. By Lemma 3.3, it follows that A1 is a linearly independent subset of
A. The restriction of the left composite (1.2) to

A1 ⊗ A1 := {q1 ⊗ q2 | q1, q2 ∈ A1}
acts as

(3.2) G : q1 ⊗ q2
�∆⊗1A // q1 ⊗ q1 ⊗ q2

�1A⊗∇ // q1 ⊗ q1 · q2 .

By Lemma 3.2, q1 · q2 ∈ A0
1 for q1, q2 ∈ A1. If q1 · q2 = 0 for some grouplike

q1, q2, then (q1⊗q2)G = 0. Since G is invertible, this would imply q1⊗q2 = 0,
a contradiction. Thus (3.2) corestricts to G0 : A1⊗A1 → A1⊗A1. It follows
that the inverse G−1 restricts and corestricts to

G−1
0 : A1 ⊗ A1 → A1 ⊗ A1; p1 ⊗ p2 7→ p1 ⊗ p1\p2 .

The equation G0G
−1
0 = 1A1⊗A1 yields

(3.3) ∀ q1, q2 ∈ A1 , q1\(q1 · q2) = q2 ,

while the equation G−1
0 G0 = 1A1⊗A1 yields

(3.4) ∀ p1, p2 ∈ A1 , p1 · (p1\p2) = p2 .

Dually, the equation a0a−1
0 = 1A1⊗A1 yields

(3.5) ∀ q1, q2 ∈ A1 , (q1 · q2)/q2 = q1 ,
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while the equation a−1
0 a0 = 1A1⊗A1 yields

(3.6) ∀ p1, p2 ∈ A1 , (p1/p2) · p2 = p1 .

Together, (3.3)–(3.6) imply that (A1, ·, /, \) forms an equational quasigroup,
so that (A1, ·) forms a combinatorial quasigroup. �

3.4. Bimagmas in categories of modules under the direct sum. In
this paper, we will often have cause to consider bimagmas and quantum
quasigroups in the symmetric monoidal category (S,⊕, {0}) of S-modules
under the direct sum, over a commutative unital ring S.

Definition 3.5. Consider the symmetric monoidal category (S,⊕, {0}) of
modules over a commutative, unital ring S. Then a magma and comagma
structure (A,∇,∆) in (S,⊕, {0}) with

(3.7) ∇ : A⊕A→ A;x⊕y 7→ xρ+yλ and ∆: A→ A⊕A;x 7→ xL⊕xR

is written as A(ρ, λ, L,R).

Remark 3.6. Note that the structure A(ρ, λ, L,R) is a universal algebra,
the S-module A together with its endomorphisms ρ, λ, L,R. This is why
the symmetric monoidal category (S,⊕, {0}) furnishes such a useful proving
ground for the study of magma and comagma properties: They reduce to
classical universal algebra in this case.

The following result provides a first illustration of Remark 3.6.

Proposition 3.7. [26, Prop. 3.39] The bimagma condition on (A,∇,∆)
in (S,⊕, {0}) reduces to the mutual commutativity of elements of the two
(in general noncommutative) subalgebras S(ρ, λ) and S(L,R), respectively
generated by {ρ, λ} and {L,R}, in the endomorphism ring S(A,A) of the
S-module A.

Corollary 3.8. A bimagma (A,∇,∆) in (S,⊕, {0}) may be identified as
a bimodule S(L,R)opAS(ρ,λ), where S(L,R)op is the opposite of the subalgebra
S(L,R) of the endomorphism ring S(A,A) of the S-module A.

Lemma 3.9. Let A(ρ, λ, L,R) be a bimagma in (S,⊕, {0}).

(a) The endomorphism

(3.8)
([
L R

]
⊕
[
1
])([

1
]
⊕
[
ρ
λ

])
=

[
L Rρ
0 λ

]
of A2 is the left composite of A(ρ, λ, L,R).

(b) The endomorphism

(3.9)
([

1
]
⊕
[
L R

])([ρ
λ

]
⊕
[
1
])

=

[
ρ 0
Lλ R

]
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of A2 is the right composite of A(ρ, λ, L,R).

Proposition 3.10. Let A(ρ, λ, L,R) be a bimagma in (S,⊕, {0}).

(a) The bimagma is not uniquely specified by its left or right composites
individually.

(b) The bimagma is uniquely specified by the conjunction of its left and
right composites.

Proof. (a) By (3.8), it is apparent that A(ρ, λ, L,R) and A(U−1ρ, λ, L,RU),
for any S-module automorphism U of A, have the same left composite.

(b) By (3.8), the left composite of A(ρ, λ, L,R) determines L and λ. Dually,
by (3.9), the right composite of A(ρ, λ, L,R) determines ρ and R. �

3.5. Linear quantum quasigroups. As before, consider the symmetric
monoidal category (S,⊕, {0}) of S-modules under the direct sum, over a
commutative unital ring S.

Definition 3.11. Consider a bimagma A(ρ, λ, L,R) in (S,⊕, {0}). Suppose
that:

(a) the endomorphisms ρ, λ of the S-module A are invertible, and
(b) the endomorphisms L,R of the S-module A are invertible.

Then A(ρ, λ, L,R) is said to be a linear quantum quasigroup.

Proposition 3.12. Suppose that (A,∇,∆) is a linear quantum quasigroup
in (S,⊕, {0}), interpreted as a bimodule S(L,R)opAS(ρ,λ) using Corollary 3.8.
It may be reconsidered as a bimodule S〈L,R〉AS〈ρ,λ〉 over the respective group
rings S〈ρ, λ〉 and S〈L,R〉 of the subgroups 〈ρ, λ〉 and 〈L,R〉 of the S-module
automorphism group S(A,A)∗ generated by {ρ, λ} and {L,R}.

Proof. Note the injective ring homomorphism S(L,R)op ↪→ S〈L,R〉 that is
given by L 7→ L−1 and R 7→ R−1. �

Proposition 3.13. In (S,⊕, {0}), a linear quantum quasigroup A(ρ, λ, L,R)
is indeed a quantum quasigroup.

Proof. In (A,∇,∆), the left composite G : A⊕ A→ A⊕ A (1.2) acts as

(3.10) x⊕ y 7→ xL ⊕ xR ⊕ y 7→ xL ⊕ (xRρ + yλ) .

Then

(3.11) a⊕ b 7→ aL
−1 ⊕

(
bλ

−1 − aL−1Rρλ−1)
is its inverse. Dually, the right composite a : A⊕ A→ A⊕ A (1.3) acts as

(3.12) x⊕ y 7→ x⊕ yL ⊕ yR 7→ (xρ + yLλ)⊕ yR .
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Then

(3.13) a⊕ b 7→
(
aρ

−1 − bR−1Lλρ−1)⊕ bR−1

is its inverse. �

Theorem 3.14. Let (V,⊕, {0}) be the symmetric monoidal category of
finitely generated modules over a commutative, unital ring S. Suppose that
A(ρ, λ, L,R) is a bimagma in (V,⊕, {0}). Consider (A,∇,∆) with the
notation of (3.7). Then the structure (A,∇,∆) forms a quantum quasigroup
in (V,⊕, {0}) if and only if A(ρ, λ, L,R) is a linear quantum quasigroup.

Proof. The sufficiency of the linear quantum quasigroup property is given
by Proposition 3.13. Conversely, consider a quantum quasigroup (A,∇,∆)
in (V,⊕, {0}), with the notation of (3.7). Thus the matrices (3.8) and (3.9)
are invertible, say

(3.14)

[
α11 α12

α21 α22

] [
L Rρ
0A λ

]
=

[
1A 0A
0A 1A

]
=

[
L Rρ
0A λ

] [
α11 α12

α21 α22

]
and

(3.15)

[
β11 β12

β21 β22

] [
ρ 0A
Lλ R

]
=

[
1A 0A
0A 1A

]
=

[
ρ 0A
Lλ R

] [
β11 β12

β21 β22

]
for endomorphisms αij and βij of the module A, with 1 ≤ i, j ≤ 2.

Consider:

• the (1, 1), (2, 1), (2, 2)-components of the left-hand equation of (3.14);
• the (1, 1), (1, 2), (2, 2)-components of the left-hand equation of (3.15).

These equations yield

α11L = 1A , β11ρ+ β12Lλ = 1A ,(3.16)

α21L = 0A , β12R = 0A ,

α21Rρ+ α22λ = 1A , β22R = 1A,

respectively. Note that L retracts α11, so it is a surjection. Then by
Nakayama’s lemma, it is an isomorphism [19, Th. 2.4]. Thus α21L = 0A
implies α21 = 0A. The equation α21Rρ + α22λ = α22λ = 1A now exhibits
λ as a surjection. Thus λ is also an isomorphism. Identical arguments
applied to the three right-hand equations of (3.16) yield that R and ρ are
invertible. �

3.6. Setlike elements in linear quantum quasigroups.

Definition 3.15. A linear quantum quasigroup (A,∇,∆) in (S,⊕, {0}) is
classical if ∆: x 7→ x⊕x. In other words, in the structure A(ρ, λ, L,R), we
have L = R = 1.

We have the following counterpart of Theorem 3.4.
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Theorem 3.16. Suppose that (A,∇,∆) is a linear quantum quasigroup
in (S,⊕, {0}). Then the set A0

1 of setlike elements of (A,∇,∆) forms a

classical linear quasigroup (A0
1,∇,∆).

Proof. It is clear that comultiplication may be (co)restricted to a linear map
A0

1 → A0
1⊕A0

1. The set A0
1 is the set of fixed points of the action of the group

〈L,R〉 of automorphisms of the S-module A. As such, it is an S-submodule
of A. In fact, by Proposition 3.7, we have

xσ∆ = xσL ⊕ xσR = xLσ ⊕ xRσ = xσ ⊕ xσ

for x ∈ A0
1 and σ ∈ 〈ρ, λ〉, making A0

1 an S〈ρ, λ〉-submodule of A. Thus
∇ : x⊕ y 7→ xρ + yλ (co)restricts to a map A0

1 ⊕ A0
1 → A0

1. �

3.7. Classical reducts. According to Definition 3.15, a linear quantum
quasigroup (A,∇,∆) or A(ρ, λ, L,R) in the category (S,⊕, {0}) is classical
if L = R = 1A, or equivalently ∆: x 7→ x⊕ x.

Lemma 3.17. If A(ρ, λ, L,R) is a linear quantum quasigroup, then so is
A(ρ, λ, 1A, 1A).

Definition 3.18. The linear quantum quasigroup A(ρ, λ, 1A, 1A) is known
as the classical reduct of the linear quantum quasigroup A(ρ, λ, L,R).

Proposition 3.19. Let A(ρ, λ, L,R) be a linear quantum quasigroup, with
set A0

1 of setlike elements. Then the classical linear quasigroup (A0
1,∇,∆)

of Theorem 3.16 forms a subquasigroup of the classical reduct A(ρ, λ, 1A, 1A)
of A(ρ, λ, L,R).

Taking the classical reduct gives the object part of a functor CR, the
classical reduct functor, from the category of linear quantum quasigroups
over S to the category of (classical) linear quasigroups (piques) over S. The
left adjoint LQ to CR is known as the linear quantization functor. It is
constructed by the following theorem.

Theorem 3.20. Consider the symmetric monoidal category (S,⊕, {0}) of
modules over a commutative, unital ring S. Let S〈r, l〉 be the group algebra
over S of the free group 〈r, l〉 on a two-element generating set {r, l}.

(a) The category of classical S-linear quasigroups is equivalent to the
category of right S〈r, l〉-modules AS〈r,l〉.

(b) There is an equivalence between the category of linear quantum quasi-
groups in (S,⊕, {0}) and the category of left/right S〈r, l〉-bimodules

S〈r,l〉AS〈r,l〉.
(c) Via the equivalences, the (object part of the) classical reduct functor

is given by the forgetful functor CR : S〈r,l〉AS〈r,l〉 7→ AS〈r,l〉.
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(d) Using the equivalences, the tensor product functor

Q : AS〈r,l〉 7→ S〈r, l〉 ⊗ AS〈r,l〉
gives the (object part of the) linear quantization functor.

Proof. (a) The structure of a right S〈r, l〉-module A amounts to a selection
of abelian group automorphisms ρ, λ ∈ Aut(A), yielding a classical linear
quasigroup A(ρ, λ, 1A, 1A). Conversely, any classical S-linear quasigroup
furnishes a structure map S〈r, l〉 → End(A); r 7→ ρ, l 7→ λ. To see the
functoriality of this correspondence, consider an S-module homomorphism
f : A → B. Now f is an S〈r, l〉-homomorphism if and only if there are
S-linear automorphisms ρ, λ of A and ρ′, λ′ of B such that for all a ∈ A,
(af)ρ′ = (af) · r = (a · r)f = (aρ)f and (fa)λ′ = (af) · l = (a · l)f = (aλ)f .
Note that these intertwining conditions fρ′ = ρf and fλ′ = λf are precisely
what is required of a bimagma homomorphism from A(ρ, λ, 1A, 1A) into
B(ρ′, λ′, 1A, 1A).

(b) Given an S-linear quantum quasigroup A(ρ, λ, L,R), we may use the
fact that S〈ρ, λ〉 and S〈L,R〉 are quotients of the free group ring S〈r, l〉
to establish bijections Ring(S〈r, l〉,End(A)) ∼= Ring(S〈ρ, λ〉,End(A)) and
Ring(S〈r, l〉,End(A)) ∼= Ring(S〈L,R〉,End(A)). The equivalence follows
from Proposition 3.12.

(c) The forgetfulness of CR corresponds to A(ρ, λ, L,R) 7→ A(ρ, λ, 1A, 1A)
forgetting comultiplication.

(d) In terms of categories of modules, Q is the left adjoint of CR (compare
[17, Sec. IV.2]). This fact, in conjunction with (a) and (b), completes the
proof. �

4. Quantum conjugates

Quasigroup conjugacy reflects the triality or S3-symmetry of the theory of
quasigroups [24, §1.3]. This section investigates the transfer of quasigroup
conjugacy to quantum quasigroups.

4.1. Inverting composites of linear quantum quasigroups. We begin
the study of conjugates with an examination of how inverses of composites
of linear quantum quasigroups themselves appear as composites of linear
quasigroups.

Proposition 4.1. Consider the symmetric monoidal category (S,⊕, {0})
of modules over a commutative, unital ring S. Let (A,∇,∆) with

∇ : A⊕ A→ A;x⊕ y 7→ xρ + yλ and ∆: A→ A⊕ A;x 7→ xL ⊕ xR

be a linear quantum quasigroup structure in (S,⊕, {0}).
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(a) The bimagma (A,∇l,∆l) with

∇l : A⊕A→ A;x⊕y 7→ yλ
−1−xρλ−1

and ∆l : A→ A⊕A;x 7→ xL
−1⊕xL−1R

has the inverse (3.11) of the left composite G of (A,∇,∆) as its own
left composite Gl. It forms a linear quantum quasigroup.

(b) The bimagma (A,∇r,∆r) with

∇r : A⊕A→ A;x⊕y 7→ xρ
−1−yλρ−1

and ∆r : A→ A⊕A;x 7→ xR
−1L⊕xR−1

has the inverse (3.13) of the right composite a of (A,∇,∆) as its
own right composite ar. It forms a linear quantum quasigroup.

Proof. (a) The left composite of (A,∇l,∆l) is

Gl : a⊕ b � ∆l⊕1 // aL
−1 ⊕ aL−1R ⊕ b � 1⊕∇l // aL

−1 ⊕
(
bλ

−1 − aL−1Rρλ−1)
,

which is inverted by

G : x⊕ y 7→ xL ⊕ xR ⊕ y 7→ xL ⊕ (xRρ + yλ) .

The right composite of (A,∇l,∆l) is

al : a⊕ b � 1⊕∆l // a⊕ bL−1 ⊕ bL−1R �∇l⊕1 //
(
bL

−1λ−1 − aρλ−1)⊕ bL−1R ,

which is inverted by

(4.1) alr : x⊕ y 7→ x⊕ yR−1 ⊕ yR−1L 7→
(
yR

−1ρ−1 − xλρ−1)⊕ yR−1L .

Finally, since the subgroups

〈ρ, λ〉 and 〈L,R〉
of the automorphism group S(A,A)∗ centralize each other, the subgroups

〈−ρλ−1, λ−1〉 and 〈L−1, L−1R〉
centralize each other, so that (A,∇l,∆l) is a linear quantum quasigroup.
The proof of (b) is dual. �

4.2. Quantum conjugates of quantum quasigroups.

Definition 4.2. Let (V,⊗,1) be a symmetric monoidal category. Let
(A,∇,∆) be a quantum quasigroup in (V,⊗,1), with respective left and
right composites G and a.

(a) The opposite or transpose (A,∇t,∆t) of (A,∇,∆) is (A, τ∇,∆τ).
(b) A quantum quasigroup (A,∇l,∆l) is a quantum left conjugate of

(A,∇,∆) if the left composite Gl of (A,∇l,∆l) is inverse to the left
composite G of (A,∇,∆).

(c) A quantum quasigroup (A,∇r,∆r) is a quantum right conjugate of
(A,∇,∆) if the right composite ar of (A,∇r,∆r) is inverse to the
right composite a of (A,∇,∆).
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The following is an immediate consequence of Definition 4.2.

Lemma 4.3. In a symmetric monoidal category (V,⊗,1), let (A,∇,∆) be
a quantum quasigroup.

(a) The transpose of the transpose (A,∇t,∆t) of (A,∇,∆) is (A,∇,∆).
(b) Suppose that (A,∇,∆) has a quantum left conjugate (A,∇l,∆l).

Then (A,∇,∆) is a quantum left conjugate of (A,∇l,∆l).
(c) Suppose that (A,∇,∆) has a quantum right conjugate (A,∇r,∆r).

Then (A,∇,∆) is a quantum right conjugate of (A,∇r,∆r).

4.3. The opposite of a quantum quasigroup. The composites of the
opposite are related to the original composites as follows.

Lemma 4.4. In a symmetric monoidal category (V,⊗,1), let (A,∇,∆)
be a quantum quasigroup, with composites G and a. Let Gt and at be the
respective left and right composites of the opposite. Then τG = atτ and
τGt = aτ .

Proof. Consider the commutative diagram

x⊗ yR ⊗ yL
�

∇t⊗1

''OOOOOOOOOOO

x⊗ y
1

1⊗∆t

88qqqqqqqqqqq� at //
_

τ

��

yRx⊗ yL
_

τ
��

y ⊗ x


∆⊗1 &&MMMMMMMMMM
� G // yL ⊗ yRx

yL ⊗ yR ⊗ x
/ 1⊗∇

77ooooooooooo

for the first equation, working with the Jay calculus [12].
The second equation follows from the first equation as applied to the

opposite quantum quasigroup (A,∇t,∆t), using Lemma 4.3(a). �

Proposition 4.5. Let (A,∇,∆) be a quantum quasigroup in a symmetric
monoidal category (V,⊗,1). The the opposite of (A,∇,∆) is a quantum
quasigroup.

Proof. The bimagma condition for the opposite of (A,∇,∆) is verified
along the lines of [13, Prop. III.2.3] or [23, Ex. 5.1.2]. Since Gt = τaτ
by Lemma 4.4, one has G−1

t = τa−1τ . Similarly, a−1
t = τG−1τ . Thus

(A,∇t,∆t) is a quantum quasigroup. �
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4.4. Quantum conjugates of Hopf algebras. In general, the existence
of quantum conjugates of a quantum quasigroup is nontrivial. We begin
by offering some initial observations for the case of cocommutative Hopf
algebras. If a quantum quasigroup (A,∇,∆) is the bimagma reduct of
a Hopf algebra A or (A,∇, η,∆, ε, S), then the opposite or transpose of
(A,∇,∆) is the bimagma reduct of the Hopf algebra Aop cop (in the notation
of [13, Cor. III.3.5]). On the other hand, Theorem 4.8 below exhibits left
and right conjugates for cocommutative Hopf algebras.

Our proof of Theorem 4.8 relies on properties of the antipode of a Hopf
algebra, as presented for Hopf algebras in a category of vector spaces under
the tensor product in [13, Th. III.3.4], for example; these properties are
listed in Lemma 4.6. However, because Kassel never invokes the structure
of the ground field, we may consider his arguments to be expressions of the
Jay calculus [12], meaning they apply to Hopf algebras in any symmetric,
monoidal category (V,⊗,1).

Lemma 4.6. Let (A,∇, η,∆, ε, S) be a Hopf algebra in (V,⊗,1).

(a) The antipode is an algebra antihomomorphism. Thus

(xy)S = ySxS and ηS = η,(4.2)

for x, y ∈ A.
(b) If xRSxL = xεη for all x ∈ A, then S2 = 1A.
(c) If (A,∇, η,∆, ε, S) is cocommutative, then S2 = 1A.

Remark 4.7. While Lemma 4.6(b) is not directly cited in the proof of
Theorem 4.8, note (a) =⇒ (b) =⇒ (c). Hence, we list all three properties
to make it easier for the reader, when cross-referencing [13, Th. III.3.4], to
convince themselves of the validity of Lemma 4.6 in the general context.

Theorem 4.8. Let (A,∇, η,∆, ε, S) be a cocommutative Hopf algebra in a
symmetric, monoidal category (V,⊗,1).

(a) The bimagma reduct (A,∇,∆) is a quantum quasigroup.
(b) With ∇l = (S⊗1A)∇ : A⊗A→ A;x⊗y 7→ xSy, there is a quantum

left conjugate (A,∇l,∆) of (A,∇,∆).
(c) With ∇r = (1A⊗S)∇ : A⊗A→ A;x⊗y 7→ xyS, there is a quantum

right conjugate (A,∇r,∆) of (A,∇,∆).

Proof. (a) See [27, Prop. 4.1].
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(b) The bimagma condition for (A,∇l,∆) is verified by the commuting of

x⊗ y � ∇l //
_

∆⊗∆

��

xS · y � ∆ // (xSy)L ⊗ (xSy)R

xSLyL ⊗ xSRyR

xL ⊗ xR ⊗ yL ⊗ yR �1⊗τ⊗1// (xL ⊗ yL)⊗ (xR ⊗ yR) �∇l⊗∇l // xLSyL ⊗ xRSyR

for x, y ∈ A, where the upper equality on the right hand side follows by the
bimagma condition for (A,∇,∆), while the lower equality on the right hand
side follows by the cocommutativity [23, Prop. 7.1.9(b)]. By [27, Prop. 4.1]
or [10, Lemmas 4.2, 4.3], the inverse of the left composite G of (A,∇,∆) is

G−1 : x⊗ y � ∆⊗1 // xL ⊗ xR ⊗ y �1⊗S⊗1// xL ⊗ xRS ⊗ y � 1⊗∇ // xL ⊗ xRSy

which is realized by the left composite Gl of (A,∇l,∆). In particular, Gl is
invertible, so the bimagma (A,∇l,∆) is a left quantum quasigroup.

We now prove the invertibility of al = (1A ⊗ ∆)(∇l ⊗ 1A), the right
composite of (A,∇l,∆). Setting

∇tl = (S ⊗ 1A)∇t = (S ⊗ 1A)τ∇ : x⊗ y 7→ yxS ,

we show that atl = (1A ⊗ ∆)(∇tl ⊗ 1A) is inverse to al. Let y ∈ A. By
coassociativity,

(4.3) yL ⊗ yRL ⊗ yRR = yLL ⊗ yLR ⊗ yR.

Tensoring (4.3) on the right by an arbitrary element x and applying the
map (S⊗1A⊗1A⊗1A)(∇⊗1A⊗1A) yields (x⊗y)alatl = (xSyL⊗yR)atl =
(xSyLL ⊗ yLR ⊗ yR)(∇tl ⊗ 1A) = yLR(xSyLL)S ⊗ yR, but now, the fact that
S is an involutary algebra antihomomorphism leads to

(x⊗ y)alatl = (yLRyLLS)x⊗ yR

= (yLLyLRS)x⊗ yR

= yLεx⊗ yR

= x⊗ yLεyR

= x⊗ y.

The second equality is due to cocommutativity.
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Finally, tensoring both sides of (4.3) on the left by x and applying the
map (S ⊗ 1A ⊗ 1A ⊗ 1A)(τ ⊗ 1A ⊗ 1A)(∇⊗ 1A ⊗ 1A) yields

(x⊗ y)atlal = (yLxS ⊗ yR)al
= (yLLxS ⊗ yLR ⊗ yR)(∇l ⊗ 1A)

= (yLLxS)SyLR ⊗ yR

= x(yLLSyLR)⊗ yR

= x⊗ yLεyR

= x⊗ y ,

verifying atlal = 1A⊗A.

(c) is dual to (b). �

4.5. Quantum conjugates of linear quantum quasigroups. In the
previous section, Theorem 4.8 provided partial results toward the existence
of quantum conjugates for Hopf algebras. The current section observes that
linear quantum quasigroups offer much more fertile ground for quantum
conjugacy. Here, the notation of Definition 4.2 is reconciled with that of
Proposition 4.1 in the following result, where parts (b) and (c) reformulate
the proposition.

Theorem 4.9. Consider the symmetric monoidal category (S,⊕, {0}) of
modules over a commutative, unital ring S. Let

A = (A,∇,∆) = A(ρ, λ, L,R)

be a linear quantum quasigroup structure in (S,⊕, {0}).

(a) The transpose

At = (A,∇t,∆t) = A(λ, ρ,R, L)

of (A,∇,∆) is a linear quantum quasigroup.
(b) The linear quantum quasigroup

Al = (A,∇l,∆l) = A(−ρλ−1, λ−1, L−1, L−1R)

of Proposition 4.1(a) is a quantum left conjugate to (A,∇,∆).
(c) The linear quantum quasigroup

Ar = (A,∇r,∆r) = A(ρ−1,−λρ−1, R−1L,R−1)

of Proposition 4.1(b) is a quantum right conjugate to (A,∇,∆).
(d) The transpose

(A,∇rl,∆rl) = A(λ−1,−ρλ−1, L−1R,L−1)
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of the quantum left conjugate (A,∇l,∆l) of (A,∇,∆) provides a
quantum left conjugate to the quantum right conjugate (A,∇r,∆r)
of (A,∇,∆).

(e) The transpose

(A,∇lr,∆lr) = A(−λρ−1, ρ−1, R−1, R−1L)

of the quantum right conjugate (A,∇r,∆r) of (A,∇,∆) forms a
quantum right conjugate to the quantum left conjugate (A,∇l,∆l)
of (A,∇,∆).

Proof. It will suffice to prove (e), since (d) is dual. Note that the right
composite alr of (A,∇lr,∆lr) is presented in (4.1) as the inverse of al,
the right composite of (A,∇l,∆l). Thus (A,∇lr,∆lr) is a quantum right
conjugate of (A,∇l,∆l). �

Theorem 6.4 shows that, in the context of linear quantum quasigroups,
quantum conjugates always exist. By Lemma 4.3, we may thus consider
involutive transformations

A 7→ At , A 7→ Al , A 7→ Ar

from a linear quantum quasigroup A to its respective transpose, quantum
left conjugate, and quantum right conjugate. The appropriate suffices t, l, r
have already been applied to many relevant structures of linear quantum
quasigroups, such as their comultiplications and right composites.

By Theorem 6.4(e), we have Art = Alr, so t = rlr. By Theorem 6.4(d),
we have Alt = Arl, so t = lrl. We thus obtain a symmetric group

S3 = 〈l, r | l2 = r2 = (lr)2〉
of conjugations of linear quantum quasigroups, with t = rlr = lrl. From
this point of view, the conjugation structure of linear quantum quasigroups
is similar to that of classical quasigroups [24, §1.3].

5. Semisymmetry

5.1. Augmentations. Let (V,⊗,1) be a symmetric, monoidal category.

Definition 5.1. An augmentation on an object A of V is a V-morphism
ε : A→ 1.

Remark 5.2. (a) An augmentation on a comagma (A,∆) is not necessarily
required to serve as a counit for the comultiplication. On the other hand,
if (A,∆, ε) is a counital comagma, then the counit ε : A→ 1 is understood
as the default augmentation on the object A.

(b) Suppose that the unit object 1 is terminal in V, as in (Set,×,>), or
the symmetric monoidal category (S,⊕, {0}) of S-modules under the direct
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sum over a commutative unital ring S. Then each object A has a uniquely
specified augmentation, which need not be mentioned explicitly.

5.2. Left and right semisymmetry. Let (A,∇,∆, ε) be a bimagma with
an augmentation in V. Consider the diagram

(5.1) A⊗ A

∇

��
A A⊗ Aε⊗1Aoo ∆⊗1A // A⊗ A⊗ A 1A⊗τ // A⊗ A⊗ A

∇⊗1A

oo

1A⊗∇ooA⊗ A

∇

OO

Definition 5.3. Let (A,∇,∆, ε) be a bimagma with an augmentation.

(a) If the upper pentagon of the diagram (5.1) commutes in V, then the
bimagma satisfies the condition of left semisymmetry.

(b) If the lower pentagon of the diagram (5.1) commutes in V, then the
bimagma satisfies the condition of right semisymmetry.

(c) If the diagram (5.1) commutes in V, then the bimagma satisfies the
condition of semisymmetry.

For the record, it is convenient to have an elementary version of the
diagram (5.1):

(5.2) xLy ⊗ xR
_

∇
��

(xLy)xR

xε ⊗ y x⊗ y�ε⊗1Aoo �∆⊗1A // xL ⊗ xR ⊗ y � 1A⊗τ // xL ⊗ y ⊗ xR
�

∇⊗1A

nn

9

1A⊗∇

pp

xL(yxR)

xL ⊗ yxR
_
∇

OO
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5.3. Commutative inverse property loops. We exhibit a key instance
of semisymmetry for quantum quasigroups.

Definition 5.4. A loop (A, ·, /, \, 1) is an inverse property loop if

(5.3) x−1(xy) = y = (yx)x−1

for all x, y ∈ A, with x−1 = 1/x [2, §II.2].

Example 5.5. An important class of commutative inverse property loops is
formed by commutative Moufang loops, loops satisfying x2(yz) = (xy)(xz)
[18, I.1.4(4)] (cf. [2, Th. II.7B]).

The following appears in [2, §II.2], albeit with a misprint.

Lemma 5.6. The relation (x−1)−1 = x holds in inverse property loops.

Working in the symmetric monoidal category (Set,×,>), we generally
use tensor product notation for direct products and ordered pairs.

Theorem 5.7. Let (A, ·, /, \, 1) be a commutative inverse property loop.

(a) Under the multiplication ∇ : a ⊗ b 7→ a · b and comultiplication
∆: A → A ⊗ A; a 7→ a−1 ⊗ a, a quantum quasigroup within the
category (Set,×,>) is formed by (A,∇,∆).

(b) The quantum quasigroup (A,∇,∆) is semisymmetric.

Proof. (a) The statement follows by [27, Cor. 3.13], given that the inversion
map x 7→ x−1 is an automorphism of a commutative inverse property loop
[2, II(2.2)].

(b) The chase round the upper part of the diagram (5.2) takes the form

x⊗ y
_

ε⊗1A

��

�∆⊗1A // x−1 ⊗ x⊗ y � 1A⊗τ // x−1 ⊗ y ⊗ x
_

∇⊗1A
��

y (x−1y)x x−1y ⊗ x�∇oo

where the commutativity of the diagram follows by y = x(x−1y) = (x−1y)x
using (5.3), Lemma 5.6, and the commutativity of the loop. Commuting of
the lower part of the diagram is similar, but does not require any application
of Lemma 5.6. �

Remark 5.8. Unless they happen to be Boolean groups (elementary abelian
groups of exponent 2), commutative Moufang loops do not generally form
semisymmetric quasigroups.
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5.4. Independence of left and right semisymmetry.

Theorem 5.9. (a) The left and right semisymmetry conditions are not
equivalent in general.

(b) Neither left nor right semisymmetry guarantees that a bimagma with an
augmentation is a quantum quasigroup.

Proof. Let K be a field. Let A be a vector space over K, with a basis
{en | n ∈ N}. Consider the linear transformations

λ : A→ A; en 7→ en+1

and

ρ : A→ A; en 7→

{
e0 if n = 0 ;

en−1 otherwise.

Thus

(5.4) λρ = 1A

and

(5.5) e0ρλ = e0λ = e1 .

In the symmetric monoidal category (K,⊕, {0}) of vector spaces over K,

take a multiplication ∇ : A⊕A→ A;x⊕ y 7→ xρ + yλ and comultiplication
∆ = 0 on A. The choice of comultiplication renders the commuting of the
bimagma diagram (2.1) trivial.

The upper pentagon of (5.2) commutes, since (xLy)xR = (yλ)ρ = y =
0 ⊕ y for x ⊕ y ∈ A ⊕ A by (5.4). Thus the bimagma (A,∇,∆) is left
semisymmetric. On the other hand, starting from e0⊕ e0 in A⊕A, tracing
round the bottom left of the diagram (5.2) leads to eL0 (e0e

R
0 ) = (eρ0)λ = e1

by (5.5). Then since e1 6= e0 = (e0 ⊕ e0)(ε⊕ 1A), the bimagma (A,∇,∆) is
not right semisymmetric. Similarly, the opposite multiplication on A yields
a right semisymmetric bimagma which is not left semisymmetric.

Finally, the left and right composites (1.2), (1.3) in (A,∇,∆) are the zero
maps on the non-trivial space A ⊕ A, so that (A,∇,∆) is not a quantum
quasigroup. �

5.5. Counital bimagmas.

Theorem 5.10. Let (A,∇,∆, ε) be a counital bimagma in (Set,×,>).

(a) The left and right semisymmetry conditions are equivalent on the
counital bimagma (A,∇,∆, ε).

(b) If left and/or right semisymmetry conditions on (A,∇,∆, ε) hold,
then (A,∇,∆) is a quantum quasigroup.
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Proof. (a) Suppose (A,∇,∆, ε) is left semisymmetric. Counitality requires
∆: a 7→ (a, a) to be the diagonal embedding. The commuting of the upper
pentagon (5.1) is thus equivalent to (ab)a = b for all a, b ∈ A. This is just
classical left semisymmetry for the magma (A,∇). It follows [24, Prop. 1.2]
that this magma is also classically right semisymmetric, which we may then
translate into the commuting of the lower half of (5.1).

(b) By (a), left or right semisymmetry forces (A,∇) to be a classically
semisymmetric magma. Then (A,∇,∇t,∇t) is an equational quasigroup,
with ∇t : (a, b) 7→ ba. Now counital quantum quasigroups in (Set,×,>)
are just quasigroups [27, Prop. 3.11(a)], and thus (A,∇,∆) is a quantum
quasigroup. �

Remark 5.11. (a) Definition 5.3 is designed to capture the classical concept
of semisymmetry, as described by Theorem 5.10, with a single application
of the comultiplication. Alternative versions of semisymmetry, invoking two
comultiplications, are deferred for future consideration.

(b) Within the lower pentagon of the commutative diagram (5.1), a formal
replacement of the morphism 1A ⊗ τ by S ⊗ 1A ⊗ 1A yields the first of the
four equations used to specify a Hopf quasigroup [14, Defn. 4.1]. Note that
the Hopf quasigroup definition requires the augmentation to be an algebra
homomorphism.

6. The Mendelsohn property

6.1. Quantum idempotence and Mendelsohn properties.

Definition 6.1. Suppose that (A,∇,∆) is a bimagma in a symmetric,
monoidal category (V,⊗,1).

(a) If the diagram

A⊗ A
∇

##FFFFFFFFF

A
1A

//

∆
;;xxxxxxxxx

A

commutes in V, then the bimagma is said to satisfy the condition
of quantum idempotence [28, Defn. 5.1].

(b) With respect to an augmentation, the bimagma is said to have the
left Mendelsohn property if it is quantum idempotent, and exhibits
left semisymmetry.

(c) With respect to an augmentation, the bimagma is said to have the
right Mendelsohn property if it is quantum idempotent, and exhibits
right semisymmetry.



QUANTUM QUASIGROUPS 27

(d) With respect to an augmentation, the bimagma is said to have the
Mendelsohn property when it has both the left and right Mendelsohn
properties.

Remark 6.2. In Proposition 4.1, if (A,∇,∆) is a quantum Mendelsohn
quasigroup, the quantum quasigroups (A,∇l,∆l) and (A,∇r,∆r) need not
satisfy the quantum Mendelsohn properties.

Theorem 5.9 showed that in the symmetric monoidal category (K,⊕, {0})
of vector spaces over a field K, left semisymmetry does not imply right
semisymmetry. In contrast with Theorem 5.9, Theorem 6.4 below shows
the power of quantum idempotence to relate the left and right Mendelsohn
properties.

6.2. Left and right Mendelsohn properties.

Lemma 6.3. Suppose that (S,⊕, {0}) is the symmetric monoidal category
of modules over a commutative, unital ring S. Suppose that (A,∇,∆) is a
bimagma in (S,⊕, {0}), written as A(ρ, λ,R, L) according to Definition 3.5.

(a) The left semisymmetry property amounts to

(6.1) λρ = 1 and Lρ2 +Rλ = 0

in the endomorphism algebra S(A,A).
(b) The right semisymmetry property amounts to

(6.2) ρλ = 1 and Lρ+Rλ2 = 0

in the endomorphism algebra S(A,A).
(c) The quantum idempotence property amounts to

(6.3) Lρ+Rλ = 1

in the endomorphism algebra S(A,A).

Theorem 6.4. Consider the symmetric monoidal category (S,⊕, {0}) of
modules over a commutative, unital ring S. Suppose that (A,∇,∆) is a
bimagma in (S,⊕, {0}). Suppose that (A,∇,∆) satisfies the left Mendelsohn
property. Then:

(a) (A,∇,∆) satisfies the right Mendelsohn property;
(b) (A,∇,∆) is a quantum quasigroup.

Proof. (a) Use the notation of (3.7). Under the commuting of {ρ, λ} with
{L,R}, together with the left semisymmetry property (6.1) and quantum
idempotence (6.3), the right semisymmetry property (6.2) must be derived.

It is helpful to introduce

(6.4) µ = Rλ = λR
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in S(A,A), so that R = Rλρ = µρ under our assumptions. Then µ = Rλ =

−Lρ2 by (6.1). Since both L and ρ2 commute with ρ, the commutative
subalgebra S[µ] generated by µ in the endomorphism S-algebra S(A,A)
commutes with the commutative subalgebra S[ρ] generated by ρ.

By (6.3), one has Lρ = 1 − Rλ = 1 − µ. The second equation of (6.1)
then becomes 0 = Lρ2 +Rλ = (1− µ)ρ+ µ = µ+ ρ− µρ, so that

(6.5) 1 = 1− µ− ρ+ µρ = (1− µ)(1− ρ) = (1− ρ)(1− µ)

in S(A,A), the latter equation following by the commuting of S[µ] with S[ρ].
Equation (6.5) shows that 1− ρ and 1− µ are mutually inverse elements of
the automorphism group of the S-module A, the group S(A,A)∗ of units of
the monoid S(A,A).

Since ρL = Lρ = 1 − µ, we have ρL(1 − ρ) = 1 by (6.5). Taken along
with λρ = 1, this shows that ρ is invertible in S(A,A). Thus λ = L(1− ρ)
and ρλ = 1, the first equation of (6.2).

By (6.1), we have (Lρ + Rλ2)ρ = Lρ2 + Rλ = 0, which now implies
Lρ+Rλ2 = 0 since ρ is invertible. This completes the verification of (6.2).

(b) Since λ = ρ−1 and µ = Rλ, we have R = µλ−1 = µρ = −ρ2(1 − ρ)−1

invertible. Likewise, since µ = −Lρ2, we have L = −µρ−2 invertible. Thus
A(ρ, λ, L,R) is a quantum quasigroup by Proposition 3.13. �

6.3. Construction and classification. Theorem 6.4 and its proof lead to
an identification of all Mendelsohn quantum quasigroups in the symmetric
monoidal category (S,⊕, {0}) of modules, over a commutative, unital ring
S, under the direct sum.

Corollary 6.5. An S-module A is endowed with a Mendelsohn quantum
quasigroup structure A(ρ, λ, L,R) in (S,⊕, {0}) if and only if

(6.6) λ =
1

ρ
, L =

1

ρ(1− ρ)
, and R = − ρ2

(1− ρ)

for an endomorphism ρ of the S-module A such that both ρ and 1 − ρ are
invertible.

Proof. The proof of Theorem 6.4 serves to provide the necessity of the given
conditions. Conversely, for any module automorphism ρ such that 1− ρ is
also invertible, both the conditions (6.1), (6.2) and the commuting of {ρ, λ}
with {L,R} are readily verified. �

An interesting “classical” consequence of Corollary 6.5 follows. Recall
that a magma (A,∇) in a symmetric, monoidal category (V,⊗,1) is said
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to be entropic if ∇ : A ⊗ A → A is a magma homomorphism, i.e., if the
diagram

(6.7) A⊗ A ∇ // A A⊗ A∇oo

A⊗ A⊗ A⊗ A
1A⊗τ⊗1A

//

∇⊗∇

OO

A⊗ A⊗ A⊗ A

∇⊗∇

OO

commutes. In the concrete notation of Remark 2.2(c), this amounts to the
identity x1x2 · x3x4 = x1x3 · x2x4.

Proposition 6.6. Suppose that (A,∇,∆) is a Mendelsohn quantum quasi-
group in (S,⊕, {0}). Then (A,∇) is an entropic quasigroup in (Set,⊗,>).

Proof. Chasing round the diagram (6.7) in (S,⊕, {0}) yields

a1 ⊕ a2 ⊕ a3 ⊕ a4
� ∇⊕∇ //

_

1A⊕τ⊕1A

��

aρ1 + aλ2 ⊕ a
ρ
3 + aλ4_

∇
��(

aρ1 + aλ2
)ρ

+
(
aρ3 + aλ4

)λ
(
aρ1 + aλ3

)ρ
+
(
aρ2 + aλ4

)λ
a1 ⊕ a3 ⊕ a2 ⊕ a4

� ∇⊕∇ // aρ1 + aλ3 ⊕ a
ρ
2 + aλ4

_
∇

OO

which commutes since ρ and λ = ρ−1 commute. Thus (A,∇) is an entropic
magma in (Set,⊗,>). It is a quasigroup, since

∇l : x⊕ z 7→ zρ − xρ2 = y and ∇r : z ⊕ y 7→ zλ − yλ2 = x

give respective unique solutions x and y to z = xy = xρ + yλ. �

Remark 6.7. (a) The entropic quasigroup (A,∇) in Proposition 6.6, when
augmented by a diagonal comultiplication ∆: x→ x⊗x, forms the classical
reduct of the Mendelsohn quantum quasigroup (A,∇,∆).

(b) Note that the classical quasigroup (A,∇) of Proposition 6.6 need not
be semisymmetric, let alone a Mendelsohn quasigroup. Consider the case
of S = C with ρ = i and λ = −i, so x · y = i(x − y) in a complex vector
space A. Then (xy)x = y − x(1 + i).
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(c) Proposition 6.6 aligns with the discussion of [6], where it is noted that
“affine” Mendelsohn quasigroups (in our case, Z-linear Mendelsohn quasi-
groups) are entropic.

6.4. An alternative parametrization. In the context of the preceding
section, it is actually more natural and instructive to take the automorphism
µ, as in (6.4), for the fundamental parameter. Use the notation µ′ for the
complement 1− µ. Corollary 6.5 may then be reformulated as follows.

Theorem 6.8. Consider the symmetric monoidal category (S,⊕, {0}) of
modules over a commutative, unital ring S. With the notations

∇ : A⊕ A→ A;x⊕ y 7→ xρ + yλ and ∆: A→ A⊕ A;x 7→ xL ⊕ xR

of (3.7), an S-module A is endowed with a Mendelsohn quantum quasigroup
structure in (S,⊕, {0}) if and only if

ρ = −µ/µ′ , λ = −µ′/µ , L = −(µ′)2/µ , and R = −µ2/µ′

for an endomorphism µ = Rλ of the S-module A such that both µ and µ′

are invertible.

Proof. Recall (1− µ)(1− ρ) = 1 by (6.5), so 1− ρ = (1− µ)−1 and

ρ = 1− 1

1− µ
=
−µ

1− µ
.

The rest follows from (6.6) on substituting for ρ in terms of µ. �

Note that R = µρ and L = µ′λ. Complementation µ 7→ µ′ takes both
the quasigroup (A,∇) and comagma (A,∆) to their respective opposites
(A, τ∇) and (A,∆τ). Expressed differently, the involutive complementation
transformation µ→ µ′ induces ρ 7→ λ and R 7→ L.

Proposition 6.9. If (A,∇,∆) is a Mendelsohn quantum quasigroup in
(S,⊕, {0}), then so is its opposite (A, τ∇,∆τ).

Proof. If (A,∇,∆) is parametrized by µ via Theorem 6.8, then its opposite
is parametrized by µ′. �

6.5. Setlike elements in linear Mendelsohn quantum quasigroups.
Suppose that (A,∇,∆) is a classical Mendelsohn quantum quasigroup in
(S,⊕, {0}). According to Theorem 6.8, this corresponds to the equations

µ2 = −µ′ and (µ′)2 = −µ ,

both of which are equivalent to the vanishing of

(6.8) µ2 − µ+ 1
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in the endomorphism ring S(A,A). In this case, the entropic quasigroup
(A,∇) of §6.3 is indeed a Mendelsohn quasigroup, in sharp contrast to the
situation described in Remark 6.7.

More generally, we have the following counterpart to Theorem 3.16.

Theorem 6.10. Suppose that (A,∇,∆) is a Mendelsohn quantum quasi-
group in (S,⊕, {0}). Then the set A0

1 of setlike elements of (A,∇,∆) forms

an entropic Mendelsohn quasigroup (A0
1, ·).

Proof. Consider (A,∇,∆) as being parametrized by an endomorphism µ of
the S-module A, according to Theorem 6.8. Then A0

1 is the kernel of the
endomorphism (6.8) of the S-module A. As such, A0

1 is invariant under the
automorphisms µ and µ′, and therefore carries q1 ·q2 = qρ1 +qλ2 as an entropic
Mendelsohn quasigroup structure. �

7. Semisymmetry of linear quantum quasigroups

Throughout this section, we will be working in the symmetric monoidal
category (S,⊕, {0}) of modules over a commutative, unital ring S. Recall
that augmentations here are trivial.

7.1. Left and right semisymmetry of linear quantum quasigroups.
For a free S-module A of countable rank, the proof of Theorem 5.9(a) shows
that the left and right semisymmetry conditions on a bimagma structure
(A,∇,∆) in (S,⊕, {0}) need not be equivalent if S is nontrivial. For linear
quantum quasigroups, the situation is different.

Theorem 7.1. Suppose that A(ρ, λ, L,R) is a linear quantum quasigroup
in (S,⊕, {0}). The left and right semisymmetry conditions on A(ρ, λ, L,R)
are equivalent.

Proof. First suppose that A(ρ, λ, L,R) is left semisymmetric. Then by
Lemma 6.3(b), the left semisymmetry corresponds to

λρ = 1 and Lρ2 +Rλ = 0

in the endomorphism algebra S(A,A). In particular, we have λ = ρ−1 and

Rλ = −Lρ2. Thus ρλ = 1 and Lρ + Rλ2 = Lρ − Lρ2λ = Lρ(1 − ρλ) = 0,
so A(ρ, λ, L,R) is right semisymmetric by Lemma 6.3(c).

The converse implication follows by applying these considerations to the
transpose A(λ, ρ,R, L) of A(ρ, λ, L,R). �

Corollary 7.2. A linear quantum quasigroup in (S,⊕, {0}) is left and right

semisymmetric if and only if it has the form A(ρ, ρ−1, L,−Lρ3) for mutually
centralizing automorphisms ρ and L of the S-module A.



32 B. IM, A.W. NOWAK, AND J.D.H. SMITH

7.2. Semisymmetrizations of linear quantum quasigroups. In this
section, we exhibit semisymmetric linear quantum quasigroups constructed
from an arbitrary linear quantum quasigroup.

Definition 7.3. Let A(ρ, λ, L,R) be a linear quantum quasigroup in the
category (S,⊕, {0}).

(a) Define an endomorphism ΛLS : A3 → A3 by the matrix

(7.1) ΛLS =

 0 −ρλ−1 0
0 0 λ
ρ−1 0 0

 .

(b) Define an endomorphism ΛRS : A3 → A3 by the matrix

(7.2) ΛRS =

 0 −λρ−1 0
0 0 ρ
λ−1 0 0

 .

(c) The endomorphism ΛS : A6 → A6 is defined as ΛS = ΛLS ⊕ ΛRS.

Lemma 7.4. The endomorphisms ΛLS, ΛRS and ΛS all satisfy the equation
X3 + 1 = 0. In particular, they are automorphisms of A3, A3, and A6

respectively.

Remark 7.5. The significance of the equation X3 + 1 = 0 within the
representation theory of classical semisymmetric quasigroups is discussed
in [21, Ex. 4.6].

Lemma 7.6. Suppose that A(ρ, λ, L,R) is a linear quantum quasigroup in
the category (S,⊕, {0}).

(a) Let CLS commute with ΛLS in the automorphism group S(A3, A3)∗

of the S-module A3. Then there is a cocommutative linear quantum
quasigroup structure A3(−Λ2

LS,ΛLS, CLS, CLS) in (S,⊕, {0}).

(b) Let CRS commute with ΛRS in the automorphism group S(A3, A3)∗

of the S-module A3. Then there is a cocommutative linear quantum
quasigroup structure A3(−Λ2

RS,ΛRS, CRS, CRS) in (S,⊕, {0}).

(c) Let CS commute with ΛS in the automorphism group S(A6, A6)∗ of

the S-module A6. Then there is a cocommutative linear quantum
quasigroup structure A6(−Λ2

S,ΛS, CS, CS) in (S,⊕, {0}).

Lemma 7.7. The respective linear quantum quasigroups of Lemma 7.6(a),
(b) and (c) are left and right semisymmetric.

Proof. Generically, denote each of these structures as Ad(−Λ2,Λ, C, C).
Note Λ−1 = −Λ2 by Lemma 7.4. Then C = −C(−Λ2)3, so Ad(−Λ2,Λ, C, C)
is left and right semisymmetric by Corollary 7.2. �
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Recall the matrix

P =

 0 0 1
−1 0 0
0 1 0


of [9, (2.2)], pronounced “rho”. For an S-module A, we thus define the
automorphism

PA =

 0 0 1A
−1A 0 0

0 1A 0


of A3. For S-module endomorphisms α : A → A and θ : A3 → A3, define
the left scalar multiplications

αθ : A3 → A3;x⊕ y ⊕ z 7→ (xα ⊕ yα ⊕ zα)ξ .

For automorphisms θ, ϕ, ψ of an S-module A, define the automorphism

Dθ,ϕ,ψ : A3 → A3;x⊕ y ⊕ z 7→ xθ ⊕ yϕ ⊕ zψ

of A3. Automorphisms of this type are described as (twisted) diagonals.

Lemma 7.8. Suppose that A(ρ, λ, L,R) is a linear quantum quasigroup in
the category (S,⊕, {0}).

(a) An automorphism CLS of A3 centralizes ΛLS in S(A3, A3)∗ if and
only if it is of the form

CLS = Dρ,λ,1

(
α1A3 + βPA + γP 2

A

)
D1,ρλ−1,ρ

for endomorphisms α, β, γ of the S-module A such that

α1A3 + βPA + γP 2
A

is invertible.
(b) An automorphism CRS of A3 centralizes ΛRS in S(A3, A3)∗ if and

only if it is of the form

CRS = Dλ,ρ,1

(
α′1A3 + β′PA + γ′P 2

A

)
D1,λρ−1,λ

for endomorphisms α′, β′, γ′ of the S-module A such that

α′1A3 + β′PA + γ′P 2
A

is invertible.

Proof. Note that (b) follows by (a) applied to the transpose A(λ, ρ,R, L) of
A(ρ, λ, L,R), so it suffices to prove (a).

Consider an endomorphism

(7.3) X =

ξ ζ ′ η′′

η ξ′ ζ ′′

ζ η′ ξ′′
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of A3 that commutes with ΛLS, for given endomorphisms ξ, ζ ′, . . . , ξ′′ of the
S-module A. The commuting is equivalent to ΛLSX =−ρλ−1η −ρλ−1ξ′ −ρλ−1ζ ′′

λζ λη′ λξ′′

ρ−1ξ ρ−1ζ ′ ρ−1η′′

 =

η′′ρ−1 −ξρλ−1 ζ ′λ
ζ ′′ρ−1 −ηρλ−1 ξ′λ
ξ′′ρ−1 −ζρλ−1 η′λ

 = XΛLS

or

− ρλ−1ξ′ = −ξρλ−1 , ρ−1ξ = ξ′′ρ−1 , λξ′′ = ξ′λ ,(7.4)

λη′ = −ηρλ−1 , −ρλ−1η = η′′ρ−1 , ρ−1η′′ = η′λ ,(7.5)

ρ−1ζ ′ = −ζρλ−1 , λζ = ζ ′′ρ−1 , −ρλ−1ζ ′′ = ζ ′λ .(7.6)

If the commuting holds, the first two equations of (7.4) yield

ξ′ = λρ−1ξρλ−1 and ξ′′ = ρ−1ξρ .

Conversely, if these two equations hold, then (7.4) is satisfied, including the
third equation as λξ′′ = λρ−1ξρ = λρ−1ξρλ−1λ = ξ′λ. In similar fashion,
the three equations of (7.5) are seen to be equivalent to

η′ = −λ−1ηρλ−1 and η′′ = −ρλ−1ηρ ,

while the three equations of (7.6) are seen to be equivalent to

ζ ′ = −ρζρλ−1 and ζ ′′ = λζρ .

Summarizing, the matrix X of (7.3) commutes with ΛLS if and only if

X =

ξ −ρζρλ−1 −ρλ−1ηρ
η λρ−1ξρλ−1 λζρ
ζ −λ−1ηρλ−1 ρ−1ξρ


for endomorphisms ξ, η, ζ of the S-module A. Setting

ξ = ρα , η = −λβ , ζ = −γ

then gives the desired result. �

Lemmas 7.6 – 7.8 combine to yield the following.

Theorem 7.9. Suppose that A(ρ, λ, L,R) is a linear quantum quasigroup
in the category (S,⊕, {0}).

(a) Consider ΛLS as in (7.1) and CLS as in Lemma 7.8(a). Then

A3(−Λ2
LS,ΛLS, CLS, CLS)

forms a semisymmetric cocommutative linear quantum quasigroup
structure in (S,⊕, {0}).
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(b) Consider ΛRS as in (7.2) and CRS as in Lemma 7.8(b). Then

A3(−Λ2
RS,ΛRS, CRS, CRS)

forms a semisymmetric cocommutative linear quantum quasigroup
structure in (S,⊕, {0}).

(c) Consider ΛLS and CLS as in (a). Consider ΛRS and CRS as in
(b). Then there is a semisymmetric cocommutative linear quantum
quasigroup structure A6(−Λ2

S,ΛS, CS, CS) in (S,⊕, {0}).

Definition 7.10. The quantum quasigroups of Theorem 7.9(a)–(c) are
known respectively as left, right, and balanced semisymmetrizations of the
linear quantum quasigroup A(ρ, λ, L,R) in (S,⊕, {0}).

7.3. Mendelsohnization of linear quantum quasigroups. If we have a
linear quantum quasigroup A(ρ, λ, L,R) in the category (S,⊕, {0}), define

an endomorphism M : A2 → A2 by the matrix

(7.7) M =

[
0 −ρλ−1

λρ−1 1

]
.

Lemma 7.11. (a) The endomorphisms M and 1A2−M of A2 are mutually
inverse.

(b) The endomorphism M satisfies M3 = −1A2.

Theorem 7.12. Given a linear quantum quasigroup A(ρ, λ, L,R) in the
category (S,⊕, {0}), the linear quantum quasigroup

A2
(
1A2 −M,M, 1A2 , 1A2

)
forms a classical (and thus cocommutative and coassociative) Mendelsohn
quantum quasigroup structure within the category (S,⊕, {0}).

Proof. The result follows by Theorem 6.8, since Lemma 7.11 implies first
that both M and 1−M are invertible, and then that L = −(1−M)2M−1 =
1A2 and R = −M2(1−M)−1 = 1A2 . �

Definition 7.13. The linear quantum quasigroup A2
(
1A2−M,M, 1A2 , 1A2

)
of Theorem 7.12 is called the (classical) Mendelsohnization of the linear
quantum quasigroup A(ρ, λ, L,R).

Remark 7.14. For a classical quasigroup (Q, ·, /, \), a classical quasigroup
structure identified as semisymmetric on Q2 has been defined by (a version
of) the multiplication

(x1, x2) ∗ (y1, y2) =
(
(x1 · y2)/x2, y1\(x1 · y2)

)
in [16, §7]. This product is idempotent, and thus provides a Mendelsohn
quasigroup structure on Q2 that may be called the Mendelsohnization of
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the quasigroup (Q, ·). Thus the Mendelsohnization of the linear quantum
quasigroup (A,∇,∆) or A(ρ, λ, L,R) appearing in Theorem 7.12 is just the
Mendelsohnization of the quasigroup (A,∇) in (Set,×,>).

8. Quantum distributivity of linear quantum quasigroups

8.1. Quantum distributivity and the QYBE. The quantum Yang-
Baxter equation (QYBE) is

(8.1) R12R13R23 = R23R13R12

[4, §2.2C]. It applies to an endomorphism

R : A⊗ A→ A⊗ A

of the tensor square of an object A in a symmetric, monoidal category. For
a given integer n > 1, the notation Rij, for 1 ≤ i < j ≤ n, means applying
R to the i-th and j-th factors in the n-th tensor power of A. Since the
left and right composite morphisms of bimagmas are also endomorphisms
of tensor squares, it is natural to seek conditions under which they satisfy
the QYBE. Then, as anticipated by B.B. Venkov working in the category
of sets with cartesian product [7, §9], the QYBE corresponds generally to
various distributivity conditions on the products ∇ : A⊗A→ A appearing
in the left and right composites, as in Example 8.2 below.

Definition 8.1. Suppose that (A,∇,∆) is a bimagma in a symmetric,
monoidal category.

(a) The bimagma (A,∇,∆) is said to satisfy the condition of quantum
left distributivity if the left composite G of (A,∇,∆) satisfies the
quantum Yang-Baxter equation (8.1).

(b) The bimagma (A,∇,∆) is said to satisfy the condition of quantum
right distributivity if the right composite a of (A,∇,∆) satisfies the
quantum Yang-Baxter equation (8.1).

(c) The bimagma (A,∇,∆) is said to satisfy the condition of quantum
distributivity if it has both the left and right quantum distributivity
properties.

Example 8.2. [28, Prop. 6.2] Let (A,∇) be a magma in the category of
sets with the cartesian product. Define ∆: A→ A⊗A; a 7→ a⊗a. Then the
bimagma (A,∇,∆) is quantum left distributive if and only if the magma
(A,∇) is left distributive, in the sense that the identity

(8.2) x(yz) = (xy)(xz)

is satisfied.
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8.2. Quantum distributivity of linear quasigroups. For the remainder
of this section, we will work in the symmetric monoidal category (S,⊕, {0})
of S-modules under the direct sum, over a commutative unital ring S.

Proposition 8.3. Suppose that (A,∇,∆) = A(ρ, λ, L,R) is a bimagma in
(S,⊕, {0}).

(a) The bimagma (A,∇,∆) is left quantum distributive if and only if
the equations

(8.3) RLρ = LRρ , Rρ = R2ρ2 + LRρλ , Rλρ = Rρλ

are satisfied.
(b) The bimagma (A,∇,∆) is right quantum distributive if and only if

the equations

(8.4) Lρλ = Lλρ , Lλ = L2λ2 +RLλρ , LRλ = RLλ

are satisfied.

Proof. (a) Note that

G12 =

L Rρ 0
0 λ 0
0 0 1

 , G13 =

L 0 Rρ
0 1 0
0 0 λ

 , and G23 =

1 0 0
0 L Rρ
0 0 λ


by (3.8). Then

G12G13G23 =

L2 RLρ R2ρ2 + LRρλ
0 Lλ Rλρ
0 0 λ2

 , G23G13G12 =

L2 LRρ Rρ
0 Lλ Rρλ
0 0 λ2

 .
The result follows by comparing the corresponding matrix entries.

(b) is dual to (a). Note that duality is implemented in the equations by the
involution (L ρ)(R λ) and a reversal of the order in products (corresponding
to equating matrix entries following a transposition of the matrices in the
QYBE). �

Corollary 8.4. Suppose that (A,∇,∆) = A(ρ, λ, L,R) is a linear quantum
quasigroup in (S,⊕, {0}). Then (A,∇,∆) is left quantum distributive if and
only if the equations

(8.5) RL = LR , 1 = Rρ+ Lλ , λρ = ρλ

are satisfied.

Proof. The outside equations of (8.5) are equivalent to the outside equations
of (8.3) via multiplication by the automorphisms ρ and R or their inverses.
Given the two commutation relationships expressed by the outside equations
of (8.5), it is then seen that the middle equation of (8.5) is equivalent to the



38 B. IM, A.W. NOWAK, AND J.D.H. SMITH

middle equation of (8.3) via multiplication by the automorphisms ρ and R
or their inverses. �

Theorem 8.5. Let (A,∇,∆) be a linear quantum quasigroup in (S,⊕, {0}).

(a) The left and right quantum distributivity conditions on (A,∇,∆) are
equivalent.

(b) If (A,∇,∆) is quantum distributive, then (A, τ∇,∆) and (A,∇,∆τ)
are quantum idempotent.

Proof. (a) Multiplication by the automorphisms L and λ or their inverses
establishes the equivalence of (8.5) with (8.4), in the same way that the
proof of Corollary 8.5 established the equivalence of (8.5) with (8.3).

(b) The quantum idempotence of each of the linear quantum quasigroups
(A, τ∇,∆) = A(λ, ρ, L,R) and (A,∇,∆τ) = A(ρ, λ,R, L) is equivalent to
1 = Lλ+Rρ by Lemma 6.3(c). This condition is the middle equation in the
criterion (8.5) for the (left or right) quantum distributivity of (A,∇,∆). �

A quantum distributive linear quantum quasigroup will be described as
a linear quantum distributive quasigroup.

8.3. Parametrization of linear quantum distributive quasigroups.

Lemma 8.6. Let (A,∇,∆) = A(ρ, λ, L,R) be a linear quantum distributive
quasigroup in (S,⊕, {0}). Define ν = Rρ. Then ν ′ = 1− ν = Lλ.

Proof. By the middle equation of (8.5), we have ν = Rρ = 1− Lλ. �

Theorem 8.7. Suppose that (A,∇,∆) = A(ρ, λ, L,R) is a linear quantum
quasigroup in (S,⊕, {0}). Then (A,∇,∆) is quantum distributive if and
only if there is an abelian group G, generated by a subset {l, n, r}, and a
representation θ : G→ S(A,A)∗, such that

(8.6) rθ = ρ , lθ = L , nθ = ν , R = νρ−1 , λ = L−1ν ′

with ν ′ = 1− ν ∈ S(A,A)∗.

Proof. First, suppose that (A,∇,∆) = A(ρ, λ, L,R) is a linear quantum
distributive quasigroup in (S,⊕, {0}). Using the notation of Lemma 8.6,
let G be the subgroup of the automorphism group S(A,A)∗ generated by
r = ρ, l = λ, and n = ν. Consider the embedding θ : G ↪→ S(A,A)∗. Then
(8.6) holds by Lemma 8.6, and so ν ′ = Lλ is invertible.

Conversely, suppose that A affords a representation θ : G→ S(A,A)∗ as
described in the theorem statement, with (8.6) holding. It may then be
verified that the conditions (8.5) hold, so that (A,∇,∆) = A(ρ, λ, L,R) is
quantum distributive by Corollary 8.4. Indeed, Rρ + Lλ = ν + ν ′ = 1,
while RL = LR and λρ = ρλ since ρ, λ, L,R all lie in the subalgebra of the
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endomorphism ring S(A,A) generated by the image under θ of the abelian
group G. �

8.4. Linear quantum distributive Mendelsohn quasigroups. Recall
the parametrization of linear Mendelsohn quantum quasigroups (A,∇,∆)
or A(ρ, λ, L,R) in terms of an endomorphism µ of the S-module A with
invertible µ and µ′ (Theorem 6.8). We will describe a quantum distributive
linear Mendelsohn quantum quasigroup as a linear quantum distributive
Mendelsohn quasigroup.

Theorem 8.8. Suppose that (A,∇,∆) is a linear Mendelsohn quantum
quasigroup in (S,⊕, {0}). Then (A,∇,∆) is quantum distributive if and
only if

(8.7) (µ2 − µ+ 1)(2µ− 1)2 = 0

in the endomorphism ring S(A,A) of the S-module A.

Proof. Comparison of the specifications of ρ, λ, L,R from Theorem 6.8 and
Theorem 8.7 yields the equations

−µ
2

µ′
= R = νρ−1 = −νµ

′

µ
and − µ′

µ
= λ = L−1ν ′ = − ν ′µ

(µ′)2

so that

1 = ν + ν ′ =
µ3

(1− µ)2
+

(1− µ)3

µ2

or

0 = 4µ4 − 8µ3 + 9µ2 − 5µ+ 1 = (µ2 − µ+ 1)(2µ− 1)2

as required. �

Example 8.9. Let 2 be invertible in S. Consider the automorphism

µ =


0 1 0 0
0 0 1 0
0 0 0 1
−1

4
5
4
−9

4
2


of S4, a companion matrix to the monic multiple X4−2X3 + 9

4
X2− 5

4
X+ 1

4

of the polynomial on the left hand side of (8.7). Then the automorphisms

ρ =


1 5 4 −4
1 −4 4 −4
1 −4 5 −4
1 −4 5 −3

 , λ =


−4 9 −8 4
−1 1 0 0
0 −1 1 0
0 0 −1 1
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and

L =


−3 8 −8 4
−1 2 −1 0
0 −1 2 −1
1
4
−5

4
5
4

0

 , R =


1 −4 4 −4
1 −4 5 −4
1 −4 5 −3
3
4
−11

4
11
4
−1


yield a linear quantum distributive Mendelsohn quasigroup S4(ρ, λ, L,R) in
the category (S,⊕, {0}).

Corollary 8.10. Let (A,∇,∆) be a linear Mendelsohn quantum quasigroup
in the category (S,⊕, {0}). Then (A,∇,∆) is quantum distributive if either
of the following holds:

(a) The quantum quasigroup (A,∇,∆) is setlike, with µ2 − µ+ 1 = 0;
(b) The quantum quasigroup (A,∇,∆) is not setlike, and 2µ = 1A.

The linear quantum distributive Mendelsohn quasigroup S4(ρ, λ, L,R) of
Example 8.9 matches neither of the conditions (a), (b) of Corollary 8.10.
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(Eds.), Nonassociative Mathematics and its Applications, Contemporary Mathe-
matics 721, American Mathematical Society, Providence, RI, 2019, pp. 199–211.
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