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Abstract: Modes are idempotent and entropic algebras. While the mode structure of sets of submodes has received consi-
derable attention in the past, this paper is devoted to the study of mode structure on sets of mode homomorphisms.
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can be decomposed as Płonka sums of more elementary homomorphism algebras. Some critical examples are
examined.
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1. Introduction

There are two important and typical ways of constructing new modes (idempotent and entropic algebras) from givenones. One method is based on the fact that the set of subalgebras of a mode again forms a mode, providing so-calledmodes of submodes. The other method is based on the fact that the set of homomorphisms from one mode to anotheralso has the structure of a mode, providing so-called (homo-)morphism algebras or homomorphism modes. While there isalready a substantial body of results concerning modes of submodes and their generalizations (for basic results see [8]and [9], and for newer results [6]), there are only a few known results concerning algebras of mode homomorphisms.
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The algebra of mode homomorphisms

This paper is devoted to the study of algebras of mode homomorphisms. We investigate their structure, compare it withthe structure of modes of submodes, and examine the fine structure of the sets of homomorphisms from subalgebras ofone mode to subalgebras of another mode of the same type.The main results are as follows. In Section 3, we define the algebra of homomorphisms between two modes A,B of thesame type, and show that it can also be described as a certain algebra of submodes of A×B. In general, this algebradoes not coincide with the mode of submodes of A×B. However, if A and B are diagonal modes, then the algebra ofhomomorphisms from A to B is a subalgebra of the algebra of submodes of A×B (Proposition 3.6).The algebra of homomorphisms from submodes of a mode A to submodes of a mode B, both in the same prevariety K,is defined in Section 4. When K is a variety V, this algebra satisfies precisely the regular identities satisfied in V(Theorem 4.3). The fine structure of these homomorphism algebras is investigated in Section 5. We show that theyare Płonka sums of K-algebras (Theorem 5.4). In Section 6, the construction is specialized to the case of surjectivehomomorphism algebras (Theorem 6.6 and Corollary 6.8).We refer readers to the monographs [8–10] for additional information about algebraic concepts used in the paper, especia-lly those concerning convex sets, barycentric algebras, and affine spaces. Our notation generally follows the conventionsestablished in these three monographs.Throughout the paper, we assume that all the algebras have plural type τ : Ω → N. In other words, they always haveat least one binary operation (there exists ω ∈ Ω such that ωτ > 1) and no basic constants (for all ω ∈ Ω, ωτ > 0).If there is no danger of confusion, algebras and their underlying sets are denoted by the same symbol. The class ofall algebras of type τ (or the category of τ-algebras) is denoted by τ. For algebras A and B in τ, the symbol τ(A,B)denotes the set of all homomorphisms from A to B. If A and B are in a class K of τ-algebras, then we write K(A,B)instead of τ(A,B). The symbol x1 . . . xnw means that x1, . . . , xn are exactly the variables appearing in the word w.Regular and irregular identities play an essential role in this paper. Recall that the regular identities satisfied inalgebras (or in a variety) are those having the same sets of variables on each side. A strongly irregular algebra(variety) is an algebra (variety) satisfying a strongly irregular identity x ◦y = x for some derived operation x ◦y. Theregularization Ṽ of an irregular variety V of type τ is the variety defined by all the regular identities holding in V. Weuse the fact that all algebras in the regularization Ṽ of an irregular variety V of modes are Płonka sums of V-algebras.(See e.g. [9, Chapter 4].) Recall that for a functor F : I → τ, from a semilattice (I, ∨) considered as a category to thecategory τ of τ-algebras (A,Ω), the Płonka sum IF = ⊔
i∈I Ai of the functor F (or of the algebras iF = (Ai,Ω) over I)is the algebra defined on the disjoint union ⋃i∈I Ai with the Ω-algebra structure given by ω : Ai1× · · · ×Ain → Ai,(ai1 , . . . , ain ) 7→ ai1φi1,i . . . ainφin,iω, for each n-ary ω ∈ Ω, where i = i1∨ · · · ∨in and, for k = 1, . . . , n, the mapping

φik ,i : ikF → iF is the Ω-homomorphism (ik → i)F .
2. Modes

In the sense of [8, 9], modes are algebras in which each element forms a singleton subalgebra, and for which eachoperation is a homomorphism. For algebras (A,Ω) of a given type τ : Ω → N, these two properties are equivalent tosatisfaction of the identity
x . . . xψ = xof idempotence for each operator ψ in Ω, and the identity

(x1,1 . . . x1,ψτψ) . . . (xφτ,1 . . . xφτ,ψτψ)φ = (x1,1 . . . xφτ,1φ) . . . (x1,ψτ . . . xφτ,ψτφ)ψ
of entropicity for each pair ψ,φ of operators in Ω.One of the main families of examples of modes is given by affine spaces over a commutative unital ring R (affine
R-spaces), or, more generally, by subreducts (subalgebras of reducts) of affine spaces. Affine spaces are considered hereas Mal’tsev modes, as explained in the monographs [8, 9]. In particular, if 2 is invertible in R , an affine R-space can beconsidered as the reduct (A, R) of an R-module (A,+, R), where R is the family of binary operations

r : A2 → A; (x1, x2) 7→ x1x2r = x1(1− r) + x2r
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for each r ∈ R . The class of all affine R-spaces is a variety (cf. also [2]) and is denoted by R .An important class of subreducts of affine spaces is given by convex sets, defined as subreducts of affine R-spaces, where
R is the ring of real numbers. Convex sets are characterized as subsets of a real vector space closed under the operations
r of weighted means coming from the open real unit interval Io = ]0, 1[. Thus a convex set contains, along with any twoof its points, the line segment joining them. The class C of convex sets, considered as such algebras (C, Io), generatesthe variety B of barycentric algebras, and is characterized as the subquasivariety of B defined by all the cancelationlaws for the binary operations r, where r ∈ Io. (See [5].) The definition of real convex sets and barycentric algebras iseasily generalized to the case of subfields F of the field R. (See e.g. [9, Chapters 5, 7].)Other well-known classes of modes are given by normal bands (semigroup modes), quasigroup modes, and many classesof groupoid modes.
3. Mode homomorphisms and submodes

Let τ : Ω→ N be a plural type. Let A and B be modes in a prevariety K of type τ. The set K(A,B) of homomorphismsfrom A to B is an algebra of type τ, with
f1 . . . fωτω : A → B; a 7→ af1 . . . afωτω

for a in A and fi in K(A,B). As a subalgebra of the power BA, the algebra K(A,B) lies in the prevariety K. (See[9, Proposition 5.1, Corollary 5.2].)Given a homomorphism f : A → B, define its graph gr(f) = {(a, af) ∈ A×B : a ∈ A}. It is easy to check that gr(f) is asubalgebra of the direct product A×B. Let Gr(A,B) be the set consisting of the graphs of all homomorphisms in K(A,B).
Lemma 3.1.
Let C be a subalgebra of A×B. Then C ∈ Gr(A,B) if and only if the following two conditions are satisfied:(a) {a ∈ A : (a, b) ∈ C} = A;(b) for all (a1, b1), (a2, b2) ∈ C, a1 = a2 implies b1 = b2.
Proof. If C ∈ Gr(A,B), then C obviously satisfies conditions (a) and (b). Now let C be a subalgebra of A×Bsatisfying these two conditions. Let ω ∈ Ω and (a1, b1), . . . , (aωτ , bωτ ) ∈ C . By defining af = b for each (a, b) ∈ C ,one obtains a function f : A → B. Moreover, since

(a1, b1) . . . (aωτ , bωτ )ω = (a1 . . . aωτω, b1 . . . bωτω),
and C is a subalgebra of A×B, it follows that a1 . . . aωτωf = b1 . . . bωτ ω = a1f . . . aωτfω. This implies that f is anΩ-homomorphism and C = gr(f).
For each ω ∈ Ω, define an operation ω on Gr(A,B) by

gr(f1) . . . gr(fωτ )ω = gr(f1 . . . fωτω), (1)
for homomorphisms f1, . . . , fωτ ∈ K(A,B). Obviously,

gr(f1 . . . fωτω) = {(a, af1 . . . fωτω) : a ∈ A} = {(a, af1 . . . afωτω) : a ∈ A}. (2)
Let Ω = {ω : ω ∈ Ω}. Then under the operations of Ω, the set Gr(A,B) is an algebra of the same type as K(A,B), withthe following obvious property.
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Corollary 3.2.
The algebras K(A,B) of homomorphisms from A to B and the graph algebra Gr(A,B) are isomorphic,

K(A,B) ∼= Gr(A,B).
The algebra Gr(A,B) consists of certain subalgebras of the direct product A×B. One of the very special properties ofmodes is that for any mode A, the set AT of its subalgebras again forms a mode. For ω ∈ Ω and subalgebras A1, . . . , Aωτof A,

A1 . . . Aωτω df= {a1 . . . aωτω : ai ∈ Ai} (3)
is also a subalgebra of A. Under these operations, AT forms a mode satisfying all the regular linear identities true in A.The operations defined by (3) are called complex operations, and the algebra AT is called the (total) submode algebraof A.A natural question arises as to how the graph algebra Gr(A,B) and submode algebra (A×B)T are related. First notethe inclusion Gr(A,B) ⊆ (A×B)T . One can prove more.
Proposition 3.3.
Let f1, . . . , fωτ ∈ K(A,B) and ω ∈ Ω. Then gr(f1) . . . gr(fωτ )ω ≤ gr(f1) . . . gr(fωτ )ω.

Proof. First we show that gr(f1) . . . gr(fωτ )ω ⊆ gr(f1) . . . gr(fωτ )ω. This follows directly by the fact that
gr(f1) . . . gr(fωτ )ω = {(a, af1 . . . afωτω) : a ∈ A} = {(a . . . aω, af1 . . . afωτω) : a ∈ A}

– see (1) and (2) – while
gr(f1) . . . gr(fωτ )ω = {(a1, a1f1) . . . (aωτ , aωτfωτ )ω : ai ∈ A} = {(a1 . . . aωτω, a1f1 . . . aωτfωτω) : ai ∈ A}. (4)

Since both these algebras are subalgebras of A×B, then gr(f1) . . . gr(fωτ )ω is a subalgebra of gr(f1) . . . gr(fωτ )ω.
Example 3.4.In general, the inclusion in Proposition 3.3 cannot be replaced by equality. Consider the 2−1-reducts of two affinesubspaces of the affine (real) plane R2: the x-axis A and the y-axis B. Consider the 2−1-homomorphisms

f1 : A → B; 0 7→ 0, 1 7→ 1, f2 : A → B; 0 7→ 0, 1 7→ 2.
Observe that gr(f1) is the line y = x and gr(f2) is the line y = 2x. Now gr(f1)gr(f2)2−1 = R2, while gr(f1)gr(f2)2−1 isthe line y = (3/2)x. Note also that gr(f1)gr(f2)2−1 cannot be the graph of any 2−1-homomorphism h : A → B.More generally, the graphs of non-trivial homomorphisms from the affine R-space A to the affine R-space B are justlines on the plane R2 not parallel to the y-axis. Applying the operation r, where 0 < r < 1, to any two such distinctlines L1 and L2 produces another line, while applying the complex operation r produces the whole plane.
Lemma 3.5.
Let ω ∈ Ω and f1, . . . , fωτ ∈ K(A,B). Then

gr(f1) . . . gr(fωτ )ω = gr(f1) . . . gr(fωτ )ω (5)
if and only if for any a1, . . . , aωτ ∈ A,

a1f1 . . . aωτfωτω = (a1f1 . . . a1fωτω) . . . (aωτf1 . . . aωτfωτω)ω. (6)
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Proof. First note that by Proposition 3.3, the equation (5) is equivalent to
gr(f1) . . . gr(fωτ )ω ⊇ gr(f1) . . . gr(fωτ )ω. (7)

A typical element of the left-hand side of equation (7) has the form (a, af1 . . . fωτω). By (4), a typical element ofgr(f1) . . . gr(fωτ )ω can be written as (a1 . . . aωτω, a1f1 . . . aωτfωτω). Hence it belongs to the left-hand side preciselywhen
a1f1 . . . aωτfωτω = (a1 . . . aωτω)(f1 . . . fωτω).

Now observe that by the definition of f1 . . . fωτω, the homomorphic property of f1, . . . , fωτ , and the entropic law for ω,the following hold:
(a1 . . . aωτω)(f1 . . . fωτω) = (a1 . . . aωτω)f1 . . . (a1 . . . aωτω)fωτω= (a1f1 . . . aωτf1ω) . . . (a1fωτ . . . aωτfωτω)ω = (a1f1 . . . a1fωτω) . . . (aωτf1 . . . aωτfωτω)ω.

Thus (7) is indeed equivalent to (6).
A τ-mode (A,Ω) (or a variety of τ-modes) is called diagonal if the diagonal identity

(x1,1 . . . x1,ωτω) . . . (xωτ,1 . . . xωτ,ωτω)ω = x1,1x2,2 . . . xωτ,ωτω
is satisfied for each ω ∈ Ω. (See e.g. [7], [9, § 5.2].)
Proposition 3.6.
Let V be a diagonal subvariety of a prevariety K of τ-modes. Then for any non-empty algebras A ∈ K and B ∈ V,
K(A,B) ≤ (A×B)T .

Indeed, by Corollary 3.2, K(A,B) ∼= Gr(A,B). By Lemma 3.5, Gr(A,B) is a subalgebra of (A×B)T .In the case where the τ-modes A and B from K coincide, the algebra K(A, A) is the algebra of endomorphisms of A. Italso carries the structure of a monoid (K(A, A), · , 1A) under the composition · of mappings, with the identity mapping 1A.It is easy to check that for an operation ω ∈ Ω and f1, . . . , fωτ , h ∈ K(A, A), the following distributive laws hold:
f1 . . . fωτω · h = (f1 ·h) . . . (fωτ ·h)ω, h ·f1 . . . fωτω = (h ·f1) . . . (h ·fωτ )ω. (8)

More generally, if φ is also an operator in Ω, and g1, . . . , gφτ ∈ K(A, A), then
(f1 . . . fωτω) · (g1 . . . gφτφ) = ((f1 ·g1) . . . (fωτ ·g1)ω) . . . ((f1 ·gφτ ) . . . (fωτ ·gφτ )ω)φ. (9)

Indeed,
x
((f1 . . . fωτω) · (g1 . . . gφτφ)) = (xf1 . . . xfωτω)(g1 . . . gφτφ) = (xf1 . . . xfωτω)g1 . . . (xf1 . . . xfωτω)gφτφ= (x(f1 ·g1) . . . x(fωτ ·g1)ω) . . . (x(f1 ·gφτ ) . . . x(fωτ ·gφτ )ω)φ= x

((f1 ·g1) . . . (fωτ ·g1)ω) . . . ((f1 ·gφτ ) . . . (fωτ ·gφτ )ω)φ
for x in A. One obtains the algebra (K(A, A),Ω, · , 1), in which the monoid operation and the Ω-operations are connectedby the equations (8)–(9).Entropic Ω-algebras with a monoid structure satisfying the identities (8) were investigated by algebraists in the formerSoviet Union, where they were known as Ω-rings. The first essential paper on the topic was probably [3]. See also [11],and the references cited there.
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Assume additionally that the algebra A is a diagonal mode, and consider idempotent endomorphisms f1, . . . , fωτ of A, i.e.endomorphisms fi : A → A such that fi · fi = fi. Then by (9), the diagonal identities imply
f1 . . . fωτω · f1 . . . fωτω = ((f1 · f1) . . . (fωτ · f1)ω) . . . ((f1 · fωτ ) . . . (fωτ · fωτ )ω)ω= ((f1 · f1) . . . (fωτ · fωτ)ω) = f1 . . . fωτω.

It follows that the set of idempotent endomorphisms of A is closed under the operations Ω. For entropic and diagonalalgebras, this fact was first observed in [4]. In [1], it was shown that for each algebra A in a variety V, the setof idempotent endomorphisms of A is closed under the basic operations Ω precisely if the variety V is entropic anddiagonal. In particular, this implies that the idempotent endomorphisms of a diagonal mode constitute a subalgebra of
K(A, A), and hence of the algebra (A×A)T .
4. The algebra of mode homomorphisms

As before, let τ : Ω → N be a plural type, and let K be a prevariety of modes of type τ. Let A and B be modes in K.The algebra K(A,B) of homomorphisms may be extended by the addition of homomorphisms from subalgebras of A tosubalgebras of B.For subalgebras X1 and X2 of A, let X1 ∩X2 denote the intersection of X1 and X2 in the lattice (AT ,+, ∩) of subalgebrasof A. Similarly, let Y1 +Y2 denote the join in the lattice (BT,+, ∩) of subalgebras Y1 and Y2 of B. Multiple intersectionsand joins are denoted by ⋂ and ∑ respectively. In a semilattice (S, ◦ ), an n-ary word x1 . . . xn t (for positive n) isinterpreted as the product x1 ◦ · · · ◦xn. Thus the semilattices (AT , ∩) and (BT,+) may be considered as Ω-algebras,defining X1 . . . Xωτω = X1 ∩ · · · ∩ Xωτ in the former, and Y1 . . . Yωτω = Y1 + · · ·+ Yωτ in the latter.
Definition 4.1.For modes A and B in a prevariety K, let Kext(A,B) denote the set of all homomorphisms f : X → Y from subalgebras Xof A to subalgebras Y of B. For each operation ω in Ω, and for elements fi : Xi → Yi of Kext(A,B), define

f1 . . . fωτω : ωτ⋂
i=1Xi →

ωτ∑
i=1 Yi; x 7→ xf1 . . . xfωτω. (10)

The Ω-algebra Kext (A,B) will be called the homomorphism algebra from A to B or just the homomorphism algebra.
Remark 4.2.(a) The set Kext (A,B) is the disjoint union of the sets K(X, Y ), where X runs over all the elements of AT , and Y runsover all the elements of BT :

Kext (A,B) = ⋃̇X∈AT
Y∈BT

K(X, Y ).
(b) If the subalgebra Y of B is empty, while the subalgebra X of A is not, then the set K(X, Y ) is empty. If thesubalgebra X of A is empty, then K(Ø, Y ) is the singleton consisting of the “empty” function Ø ↪→ Y . Following thisobservation, we consider Kext (A,B) as the disjoint union of all the K(X, Y ), where Y is non-empty if X is non-empty.
For the homomorphisms fi : Xi → Yi in the context of Definition 4.1, define

gi : ωτ⋂
j=1Xj →

ωτ∑
j=1 Yj ; x 7→ xfi.

Note that the gi are simultaneous restrictions of fi to ⋂ωτ
j=1 Xj and expansions of fi to ∑ωτ

j=1 Yj . Then the map f1 . . . fωτωof (10) is the homomorphism
g1 . . . gωτω ∈ K

( ωτ⋂
i=1Xi,

ωτ∑
i=1 Yi

)
.
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Theorem 4.3.
Let V be a variety of τ-modes. Then for any algebras A and B in V, the homomorphism algebra Vext (A,B) satisfies all
the regular identities holding in V.

Proof. Let x1 . . . xnu = x1 . . . xnv be one of the regular identities holding in V. Consider elements fi : Xi → Yi of
Vext(A,B). Note that

X1 . . . Xnu = X1 ∩ · · · ∩ Xn = X1 . . . Xnvin the Ω-semilattice obtained from (AT , ∩), and
Y1 . . . Ynu = Y1 + · · ·+ Yn = Y1 . . . Ynv

in the Ω-semilattice obtained from (BT,+). Set X = X1 . . . Xnu and Y = Y1 . . . Ynu. Then both f1 . . . fnu and f1 . . . fnvhave domain X and codomain Y . For each element x of X , the satisfaction of u = v by Y yields
x(f1 . . . fnu) = xf1 . . . xfnu = xf1 . . . xfnv = x(f1 . . . fnv).

Thus Vext (A,B) satisfies u = v .
Corollary 4.4.
Let V be a variety of τ-modes. Then for algebras A and B in V, the homomorphism algebra Vext (A,B) lies in the
regularization Ṽ of V.

If algebras A and B are in a variety V satisfying an irregular identity, then this identity does not necessarily carry overto the homomorphism algebra Vext (A,B).
Example 4.5.For τ : { ·} → {2} (the type of binars or magmas), consider the terminal algebra > of τ, a singleton. Let A = B = >.Then >T = {Ø, >}, and

τ ext(>,>) = {1Ø, 1>, j : Ø ↪→ >}.Regard > as a left zero semigroup, satisfying the irregular identity x ·y = x. Let LZ be the variety of left zero semigroups.Then 1Ø · 1> : Ø ∩ > → Ø +> is j : Ø→ >, distinct from 1Ø. Thus LZext(>,>) is not a left zero semigroup.
Example 4.6.Let A be a non-empty left zero semigroup. Then the defining identity x ·y = x does not even need to hold in LZext(A, A)for homomorphisms fi : Xi → Yi with non-empty domains. Indeed, f1 · f2 : X1 ∩ X2 → Y1 + Y2 equal to f1 : X1 → Y1 wouldimply X1 ⊆ X2 and Y2 ⊆ Y1, which is not necessarily satisfied.
Corollary 4.7.
Let A and B be algebras in an irregular variety V of τ-modes. Let X ∈ AT and Y ∈ BT . Then the set V(X, Y ) of
homomorphisms from X to Y is a subalgebra of the homomorphism algebra Vext(A,B), and lies in V.

5. The structure of homomorphism algebras

For τ-modes A and B, the semilattice (S(A,B), ∨) = (AT , ∩)× (BT,+)is a join-semilattice ordered by (X0, Y0) ≤ (X1, Y1) iff X0 ≥ X1 and Y0 ≤ Y1. The operation ∨ is defined by
(X0, Y0)∨ (X1, Y1) = (X0 ∩ X1, Y0 + Y1).
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The semilattice (S(A,B), ∨) may also be considered as an Ω-semilattice (S(A,B),Ω) with Ω-operations defined by
(X1, Y1) . . . (Xn, Yn)ω = (X1 ∩ · · · ∩ Xn, Y1 + · · ·+ Yn)

for each (n-ary) ω ∈ Ω.
Proposition 5.1.
Let A and B lie in a prevariety K of τ-modes. Consider the boundary map

∂ : Kext (A,B)→ S(A,B) = AT ×BT ; (f : X → Y ) 7→ (X, Y ).
Then the following hold:(a) For X in AT and Y in BT , we have ∂−1{(X, Y )} = K(X, Y ).(b) The map ∂ is a τ-homomorphism.(c) The image

∂(Kext (A,B)) = {(X, Y ) ∈ AT ×BT : Y = Ø implies X = Ø}
of the boundary map forms a subsemilattice of (S(A,B), ∨).

Proof. The first statement is immediate. The second statement follows since
f1 . . . fnω∂ = (⋂

Xi,
∑

Yi
) = f1∂ . . . fn∂ω

for n-ary ω ∈ Ω and fi : Xi → Yi in Kext(A,B). The third statement is also immediate, recalling that AT ×BT is a
τ-semilattice.
Write S̃(A,B) for the semilattice ∂(Kext (A,B)) of Proposition 5.1 (c). Recall that the semilattice replica of an algebra isits largest semilattice quotient [10, § IV.2.1].
Proposition 5.2.
Let V be an irregular variety of τ-modes, with A and B in V.(a) For a subalgebra X of A and a subalgebra Y of B, the subalgebra V(X, Y ) of the homomorphism algebra Vext(A,B)

has no non-trivial semilattice quotients.(b) The algebra
(
S̃(A,B), ∨) is the semilattice replica of Vext(A,B).

Proof. By [9, Corollary 5.2], Corollary 4.7, and Proposition 5.1, the classes ∂−1{(X, Y )}, as members of V, are incapableof further decomposition. The statements (a) and (b) follow.
Definition 5.3.Consider the semilattice (S̃(A,B), ∨) as a poset category. The functor F̃A,B : (S̃(A,B), ∨) → τ taking a morphism(X0, Y0)→ (X1, Y1) to the Ω-homomorphism

τ(X0, Y0)→ τ(X1, Y1); (
f : X0 → Y0, x 7→ xf

)
7→
(
f�X1 : X1 → Y1, x 7→ xf

) (11)
is known as the restriction-expansion functor.
Note that (11) both restricts a function f : X0 → Y0 to the subset X1 of its domain X0, while at the same time expandingthe codomain from Y0 to the superset Y1.
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Theorem 5.4.
Let A and B be members of a prevariety K of τ-modes. Then the homomorphism algebra Kext(A,B) is the Płonka sum
of the restriction-expansion functor

F̃A,B : (S̃(A,B), ∨)→ τ

of Definition 5.3.

Proof. Taking into account Proposition 5.1, it is enough to show that the Ω-operations are defined on the sumaccording to the definition of a Płonka sum. We omit the standard proof using the fact that for homomorphisms
fi : Xi → Yi as in Definition 4.1, the map f1 . . . fωτω is the homomorphism g1 . . . gωτω.
See [9, §§ 2.3, 4.2] for the definition and properties of directed colimits of algebras over a semilattice.
Corollary 5.5.
For algebras A and B in a prevariety K of τ-modes, the algebra K(A,B) is the directed colimit of the subalgebras
K(X, Y ) of Kext (A,B) over the semilattice S̃(A,B).
Corollary 5.6.
Let V be an irregular variety of τ-modes, with A and B in V. Then the homomorphism algebra Vext(A,B) is a Płonka
sum of V-algebras over its semilattice replica

(
S̃(A,B), ∨).

Proof. Indeed, by Proposition 5.2 and Corollary 4.7, Vext(A,B) is the Płonka sum of the fibres V(X, Y ), which aremembers of V, over the semilattice replica (S̃(A,B), ∨) by the functor F̃A,B .
Remark 5.7.If V is an irregular variety of τ-modes, then V is defined by a set of regular identities and one irregular identity ofthe form x ◦y = x, where x ◦y is a derived binary operation involving both x and y. (See e.g. [9, § 4.3].) Then inthe Płonka sum of Corollary 5.6, for each ordered pair (X, Y ) ≤ (X ′, Y ′) in (S̃(A,B), ∨), the Płonka homomorphism
V(X, Y )→ V(X ′, Y ′) is given by (f : X → Y ) 7→ (f : X → Y ) ◦ (b : X ′ → Y ′),
where (f : X → Y ) ◦ (b : X ′ → Y ′) : X ∩ X ′ → Y + Y ′, x 7→ xf ◦xb = xf,

and b : X ′ → Y ′ is any element of V(X ′, Y ′). In particular, note that (X ′, Y ′) ∈ S̃(A,B) implies V(X ′, Y ′) 6= Ø.
Corollary 5.6 does not extend to regular varieties of modes.
Example 5.8.Let B be the variety of barycentric algebras over the ring R of real numbers (see [9, Chapters 5, 7].) Let > be a singletonalgebra in the variety B, a terminal object of the category B. Consider the barycentric algebra (I, Io), where I = [0, 1] isthe closed unit interval of R. Then the algebra B(>, I) of homomorphisms from > to (I, Io) is isomorphic to (I, Io), whichhas a 3-element semilattice replica.The algebra Bext(>, I) is more complicated. Though it is still a Płonka sum of barycentric algebras (by Theorem 5.4), thealgebra ∂(Bext(>, I)) is not the semilattice replica of Bext(>, I), and the summands of the Płonka sum are not necessarilyindecomposable. Indeed, if Y is a non-empty subinterval of I, then the fibre B(>, Y ) is isomorphic to (Y , Io). If Y is notan open interval, then the fibre has a non-trivial semilattice replica.
Example 5.8 shows that the homomorphism algebra Kext(A,B) from a mode A to a mode B in a prevariety K may oftenbe a very large object. Hence it may be useful to study various smaller subobjects.
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Consider the semilattice (S̃(A,B), ∨). It has (Ø, B) as its largest element, and (Ø,Ø) or (A, {b}), b ∈ B, as minimalelements. The semilattice S(A,B) has additional elements of the form (X,Ø), for non-empty subalgebras X of A, and asmallest element (A,Ø).Suppose that B is non-empty. For a fixed non-empty subalgebra Y of B, the elements (X, Y ), where X runs over allsubalgebras of A, form a subsemilattice of (S̃(A,B), ∨) isomorphic to the semilattice (AT , ∩), with a largest element(Ø, Y ) and smallest element (A, Y ). Now fix a subalgebra X of A. Then the elements (X, Y ), where Y runs over allnon-empty subalgebras of B, form a subsemilattice of (S̃(A,B), ∨) isomorphic with a subsemilattice of (BT,+) with thelargest element (X,B), and (X, {b}), b ∈ B, as minimal elements.
Proposition 5.9.
Suppose that A and B are members of a prevariety K of τ-modes.(a) The set ⋃

Y∈BT

K(Ø, Y )
forms a subalgebra of Kext (A,B) isomorphic to the Ω-semilattice equivalent to (BT,+).(b) Let X ∈ AT and y ∈ B. Then K(X, {y}) = {X → {y}}. Moreover, the set⋃

X ′∈AT

K(X ′, {y})
forms a subalgebra of Kext (A,B) isomorphic to the Ω-semilattice equivalent to (AT , ∩).

Remark 5.10.Suppose that B 6= Ø. If x ∈ A and Ø 6= Y ∈ BT , then K({x}, Y ) is isomorphic to Y . By [9, Theorem 7.5.3], thealgebra Y has the semilattice of principal walls (or equivalently, the semilattice of principal sinks) as its semilatticereplica. It follows that when the algebra Y has non-trivial principal walls (or non-trivial principal sinks), it is a non-trivialsemilattice sum of algebraically open subalgebras.Similarly as in Example 5.8, for a fixed x ∈ A, the union of the fibres K({x}, Y ) forms a Płonka sum isomorphic to thePłonka sum of the subalgebras Y of B over the (join) semilattice of non-empty subalgebras of B.
Corollary 5.11.
Suppose that A and B are members of a prevariety K of τ-modes. Then the homomorphism algebra Kext (A,B) contains
subalgebras isomorphic to non-empty subalgebras of B, and to Ω-semilattices equivalent to (AT , ∩) or (BT,+).
If the algebras A and B coincide, the two sets AT and BT coincide as well, and instead of two semilattices (AT , ∩) and(BT,+), one obtains the lattice (AT ,+, ∩).
6. Surjection algebras

Let Ksur(A,B) denote the subset of Kext(A,B) consisting of all surjective homomorphisms f : X → Y from X ∈ AT onto
Y = Xf ∈ BT . By the definition of Ω in Kext (A,B), for each (n-ary) ω ∈ Ω and fi : Xi → Yi = Xif ,

f1 . . . fnω : n⋂
i=1Xi →

n∑
i=1 Yi; x 7→ xf1 . . . xfnω. (12)

Instead of (12), consider the corestriction
f1 . . . fnωc : n⋂

i=1Xi →
( n⋂
i=1Xi

)(f1 . . . fnω); x 7→ xf1 . . . xfnω .
Note the following obvious lemma.
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Lemma 6.1.
For each (n-ary) ω ∈ Ω and fi : Xi → Yi = Xifi in Ksur(A,B),( n⋂

i=1Xi
)(f1 . . . fnωc) ≤ n∑

i=1 Yi.

The following example shows that the inequality in Lemma 6.1 cannot be replaced by equality in general.
Example 6.2.Consider R as a barycentric algebra, and the two closed subintervals [0, 2] and [1, 3] of R as subalgebras X1 and X2.Consider the (uniquely defined) barycentric algebra isomorphisms

f1 : X1 → Y1 = [4, 5], f2 : X2 → Y2 = [6, 7].
Then Y1 + Y2 = [4, 7], while (X1 ∩ X2)(f1f21/2) = [21/4, 23/4].
Let Ωc = {ωc : ω ∈ Ω}. Under the operations Ωc, the set Ksur(A,B) becomes a well defined τ-algebra, the surjection
algebra from A to B, or more briefly the surjection algebra if the context is clear.Now instead of surjections f : X → Y , one may consider their graphs gr(f) = {(x, xf) : x ∈ X}, subalgebras of the directproduct X ×Y . There is a one-to-one correspondence between the surjections in Kext (A,B) and their graphs. Note thatthere is no such correspondence between general homomorphisms of Kext (A,B) and their graphs.Let Grsur(A,B) be the set consisting of the graphs of the surjections in Ksur(A,B). Note the following corollary ofLemma 3.1.
Lemma 6.3.
Let C be a subalgebra of A×B. Then C ∈ Grsur(A,B) if and only if for all (a1, b1), (a2, b2) ∈ C, a1 = a2 implies b1 = b2.

For each (n-ary) ω ∈ Ω and any fi : Xi → Yi = Xifi in Ksur(A,B), define an operation ωc on Grsur(A,B), as follows:
gr(f1) . . . gr(fn)ωc = gr(f1 . . . fnωc).

Similarly as in the case of Lemma 3.1, one has
gr(f1 . . . fnωc) = {(x, xf1 . . . fnω) : x ∈ X} = {(x, xf1 . . . xfnω) : x ∈ X},

where X = ⋂n
i=1 Xi. Let Ωc = {ωc : ω ∈ Ω}. Then under the operations of Ωc, the set Grsur(A,B) is an algebra of thesame type as Ksur(A,B), with the following obvious property.

Corollary 6.4.
The algebra Ksur(A,B) of surjective homomorphisms from A to B is isomorphic to the algebra Grsur(A,B) of their graphs.

Let us return to the homomorphism algebra Kext (A,B). Define the following relation δ on Kext (A,B):
(f1, f2) ∈ δ ⇐⇒ gr(f1) = gr(f2).

Lemma 6.5.
The relation δ is a congruence relation of the homomorphism algebra Kext (A,B).
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Proof. It is clear that δ is an equivalence relation. To show that it is a congruence relation, let ω ∈ Ω be n-ary, andlet (fi : Xi → Yi) and (hi : X ′i → Y ′i ), for i = 1, . . . n, be in Kext(A,B). Assume that for i = 1, . . . , n, we have (fi, hi) ∈ δ.This means that Xi = X ′i and xfi = xhi for each x ∈ Xi. Recall that
f1 . . . fnω : n⋂

i=1Xi →
n∑
i=1 Yi; x 7→ xf1 . . . xfnω.

Similarly,
h1 . . . hnω : n⋂

i=1Xi →
n∑
i=1 Y

′
i ; x 7→ xh1 . . . xhnω.

By (2), it follows that
gr(f1 . . . fnω) = {(x, xf1 . . . fnω) : x ∈ n⋂

i=1Xi
} = {(x, xf1 . . . xfnω) : x ∈ n⋂

i=1Xi
}

= {(x, xh1 . . . xhnω) : x ∈ n⋂
i=1Xi

} = {(x, xh1 . . . hnω) : x ∈ n⋂
i=1Xi

} = gr(h1 . . . hnω).
Theorem 6.6.
Let A and B be members of a prevariety K of τ-modes. Then the surjection algebra Ksur (A,B) is isomorphic to a quotient
of the homomorphism algebra Kext (A,B). More precisely, Ksur (A,B) = Kext (A,B)δ .
Proof. By Lemma 6.5, it is sufficient to note that each δ-class contains precisely one element which is surjective.
The structure of Ksur (A,B) may be described similarly as the structure of Kext (A,B). In particular, if K is an irregularvariety V of τ-modes, then Vsur (A,B), as a quotient of Vext (A,B), also belongs to the regularization Ṽ of V. Hence, it isalso a Płonka sum of V-algebras. To describe the structure of Ksur (A,B) in more detail, consider again the functor F̃A,B .Note that S̃(A,B) contains a subsemilattice, consisting of all pairs (X,B) for X ∈ AT , isomorphic to the semilattice(AT , ∩). Let us identify these two semilattices. Then the functor F̃A,B restricts to the functor

FA,B : (AT , ∨) = (AT , ∩) → τ

providing the Płonka sum of the summands K(X,B) over the semilattice (AT , ∩). Evidently, this Płonka sum ⊔X≤A K(X,B)forms a subalgebra of Kext (A,B).
Lemma 6.7.
The surjection algebra Ksur (A,B) and the algebra

⊔
X≤A K(X,B) are isomorphic. Moreover, for each X ∈ AT , the

corresponding Płonka fibre Ksur(X ) of Ksur (A,B) consists of all the surjective homomorphisms in K(X,B).
Proof. First note that for f : X → Y in Kext (A,B), the δ-class fδ of f contains precisely one surjection fs : X → Xf ,
x → xf , belonging to K(X, Xf), and precisely one element of K(X,B), namely, the homomorphism fB : X → B, x 7→ xf .In fact,

fδ = {h : X → Y | Xh ≤ Y , xh = xf
}
.Define the mapping

φ : ⊔
X≤A

K(X,B)→ Ksur (A,B); (f : X → B) 7→ (fs : X → Xf).
The mapping φ is bijective. Consider n-ary ω ∈ Ω, Xi ∈ AT and fi : Xi → Yi, 1 ≤ i ≤ n, in ⊔X≤A K(X,B). Then, by thedefinitions of the operations ω in Kext (A,B) and ωc in Ksur (A,B), one has

(f1 . . . fnω)φ = (f1 . . . fnω)s = fs1 . . . fsnωc = f1φ . . . fnφωc.
Hence φ is an isomorphism. The last statement of the lemma is immediate.
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Corollary 6.8.
Let A and B be algebras in an irregular variety V of τ-modes. Then the surjection algebra Vsur (A,B) is isomorphic to
the Płonka sum of V-algebras V(X,B) for X ∈ AT over the semilattice (AT , ∩).
7. Conclusion and future work

For modes A,B from a given prevariety V, the respective algebras Vext(A,B) of homomorphisms and Vsur(A,B) of surjectivehomomorphisms, from subalgebras of A to subalgebras of B, have been constructed, with the latter as a quotient of theformer (Theorem 6.6). Their Płonka sum structure has been determined (cf. Theorem 5.4), most notably for the casewhere V is an irregular variety (Corollaries 5.6 and 6.8). Algebras, semilattices, and lattices that are representable assubalgebras of Vext(A,B) have been identified (Corollary 5.11).For a variety V of modes of given type τ : Ω→ N, future work should address the following problems.
Problem 7.1.Characterize those V-algebras which may be realized as homomorphism algebras V(A,B) for members A,B of V.
Problem 7.2.Which (Ω-)semilattices may be realized as semilattice replicas of extended homomorphism algebras Vext(A,B) for members
A,B of V?
Problem 7.3.Characterize those algebras from the regularization of V which may be realized in the form of extended homomorphismalgebras Vext(A,B) for members A,B of V.
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