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Abstract. This paper presents a new approach to the study of
(real) barycentric algebras, in particular convex subsets of real
affine spaces. Barycentric algebras are cast in the setting of two-
sorted algebras. The real unit interval indexing the set of basic
operations of a barycentric algebra is replaced by an LΠ-algebra,
the algebra of ÃLukasiewicz Product Logic. This allows one to de-
fine barycentric algebras abstractly, independently of the choice of
the unit real interval. It reveals an unexpected connection between
barycentric algebras and (fuzzy) logic. The new class of abstract
barycentric algebras incorporates barycentric algebras over any lin-
early ordered field, the B-sets of G. M. Bergman, and E. G. Manes’
if-then-else algebras over Boolean algebras.

1. Introduction

Real convex sets can be presented algebraically as sets with binary
operations given by weighted means, the weights taken from the open
unit interval in the real numbers. The class of convex sets is a qua-
sivariety (defined by certain implications), and generates the variety
(defined by identities) of so-called barycentric algebras. Both these
classes have a well developed theory, a special case of the general the-
ory of modes (idempotent and entropic algebras). See e.g. [21], [22],
[25], [26], [27], [11], [28], [8].

However, in the specification of convex sets and barycentric algebras,
the open unit interval itself has not hitherto been axiomatized. The
current paper is intended to address this issue. We extend the open
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unit interval of operations to the closed interval, and consider barycen-
tric algebras as two-sorted algebras. One sort corresponds to the set
of elements of a traditional barycentric algebra, while the second sort
corresponds to a certain algebra of fuzzy logic, the so-called LΠ-algebra
([5], [6], [19], [20]). The LΠ-algebras yield an appropriate axiomatiza-
tion of the closed unit interval, and provide a broad extension of the
class of traditional barycentric algebras. The new structures encompass
two-sorted counterparts of barycentric algebras over any linearly or-
dered field, and include other algebras related to Boolean affine spaces,
the B-sets of Bergman and Stokes ([1], [29], [30]), and “if-then-else”
algebras ([18], [17]).

Following preliminary sections covering traditional barycentric alge-
bras over the reals (Section 2) and LΠ-algebras (Section 3), abstract
barycentric algebras are introduced as two-sorted algebras in Section
4. The two sorts are connected by a ternary operation assigning an
element of the first sort to a triple consisting of two elements of the
first sort and one of the second. The ternary operation satisfies axioms
(identities) that correspond to the axioms of traditional real barycen-
tric algebras. In this way the class AB of abstract barycentric algebras
becomes a variety of two-sorted algebras. As this class contains alge-
bras whose first sort is empty but whose second sort is nonempty, it
follows by results of Goguen and Meseguer [7] that the class cannot be
(categorically) equivalent to a variety of one-sorted algebras. Never-
theless, each barycentric algebra over a subfield of the real field has a
two-sorted counterpart in AB (Section 5). As the axiomatization of ab-
stract barycentric algebras requires the closed unit interval rather than
the open one, in Section 4 we present the corresponding axiomatization
of traditional barycentric algebras.

The closed unit interval of any subfield R of the field of real numbers
can easily be described as an LΠ-algebra using truncations of the four
basic operations of addition, subtraction, multiplication and division
on R. There are other approaches to the axiomatization of the (closed)
unit interval of reals. In [13], Jamison-Waldner introduced the notion of
an algebraic interval (see also [25] and [27]), modelled on the structure
of the real unit interval as a pair of commutative monoids connected
by the involutary isomorphism p 7→ 1−p. Although this notion proved
useful for investigations concerning free modes on two generators (see
[25] and [27]), and poses a number of interesting open problems, it does
not capture all the essential structure of the unit interval. More specific
algebraic intervals were considered by Kearnes [14], who investigated
the structure of idempotent simple algebras (and among them simple
modes). To describe simple modes, he needed non-trivial algebraic
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intervals (more than 2 elements) as structures closed under weighted
means (and hence being commutative monoids), generating the group
of the field. But again these intervals do not capture the structure we
need.

As the two-element Boolean algebra is always a subalgebra of an
interval LΠ-algebra defined on the unit interval of a linearly ordered
field, our approach yields a new class of abstract barycentric algebras,
namely Boolean barycentric algebras, whose second sort is a Boolean al-
gebra. As one-sorted algebras, they are just binary reducts of Boolean
affine spaces, equivalent to the B-sets of Bergman and Stokes (also in-
cluding certain “if-then-else algebras”), and also equivalent to so-called
rectangular modes, idempotent and entropic algebras with any number
of binary rectangular band operations. These results are presented in
Sections 6 and 7.

We usually summarize the necessary basic definitions and facts. For
more information on modes, we refer the reader to [25] and [27]. Al-
gebras of fuzzy logics are treated in [9], while general background on
many-sorted algebras is available in [2], [10], [16] and [31].

As the algebras we investigate come from different “worlds,” we use
two different types of notation. When speaking about modes (in par-
ticular traditional barycentric algebras and affine spaces), we follow
the conventions of [25] and [27], using postfix notation for operations
and words. In dealing with algebras of logics, we use prefix notation.
The translation from one language to another should be clear from the
context. The expressions “term operation” and “derived operation”
are used synonymously.

2. Convex sets and barycentric algebras

Let R be a subfield of the field R of real numbers. Let I = [0, 1] ⊂ R
be the closed unit interval of R. Let Io = (0, 1) be the corresponding
open unit interval.

Barycentric algebras over a subfield R of the field R may be defined
as algebras (A, Io) of type Io × {2}, equipped with a binary operation

p : A× A → A; (x, y) 7→ xy p

for each p in Io, satisfying the identities

(2.1) xx p = x

of idempotence for each p in Io, the identities

(2.2) xy p = yx 1− p
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of skew-commutativity for each p in Io, and the identities

(2.3) xy p z q = x yz q/(p ◦ q) p ◦ q

of skew-associativity for each p, q in Io. Here p ◦ q = p+q−pq. Setting
p′ := 1− p, one obtains p ◦ q = (p′q′)′.

For a given subfield R, the barycentric algebras over R form a variety.
This variety B is a variety of modes, idempotent and entropic algebras,
as defined in [25], [26] and [27]. In particular, such a variety satisfies
the entropic identities

(2.4) xyp ztp q = xzq ytq p

for all p, q ∈ Io. In other words, any two of the operations p and q
“commute.” The main models are provided by convex subsets of affine
spaces over R, and Io-semilattices (algebras equivalent to semilattices,
where the operations in Io are associative, and any two of them are
equal). Convex subsets of affine spaces over R are described as Io-
subreducts of affine spaces (A,R), see [27] and [25]. For a convex set
C, the operations p are defined by

xyp = x(1− p) + yp.

Among barycentric algebras, convex sets are characterized by can-
cellativity, i.e. they form the subquasivariety C of B defined by the
cancellation laws

(2.5) (xyp = xzp) −→ (y = z)

that hold for all p ∈ Io. The quasivariety of convex sets and the variety
of I◦-semilattices are the only minimal quasivarieties of barycentric al-
gebras. The variety of barycentric algebras may equivalently be defined
as the class of homomorphic images of convex sets in C.

Note that the latter definition of barycentric algebras may easily be
extended to the case of subrings R of the ring R. For example, if R = D,
the ring of dyadic rational numbers n2m with m,n ∈ Z, one obtains
the variety of “dyadic barycentric algebras” that in fact is equivalent to
the variety of commutative binary (or groupoid) modes. See e.g. [27].
However, not all properties of barycentric algebras over a field extend
to barycentric algebras over a ring that is not a field.

The structure of barycentric algebras over a subfield R of R is fully
described in [26] and [27, Chapter 7]. In particular, all subdirectly
irreducible convex sets are given by the bounded intervals ([0, 1], Io),
((0, 1], Io), ([0, 1), Io), ((0, 1), Io), and the closed unbounded intervals
([0,∞), Io), ((−∞, 0], Io) and (R, Io). The remaining subdirectly ir-
reducibles are the PÃlonka sums of these algebras with the singleton



ABSTRACT BARYCENTRIC ALGEBRAS 5

Io-algebra, as well as the 2-element Io-semilattice. A general barycen-
tric algebra (A, Io) embeds into a PÃlonka sum of convex sets over its
Io-semilattice replica, the greatest Io-semilattice homomorphic image
of (A, Io) [27, Theorem 7.5.10].

3. LΠ-algebras

LΠ-algebras were introduced by F. Montagna (see [19] and [6]) as
an algebraization of the so-called LΠ-logic. This logic results from the
combination of ÃLukasiewicz and product logic, two of the main fuzzy
logics (see [9]). Amongst several possible axiomatizations of the variety
of LΠ-algebras, we here present one taken from [20].

First, define a hoop to be an algebra (H, ?,→, 1) such that (H, ?, 1)
is a commutative monoid, and the implication → satisfies the following
identities:

(H1) x → x = 1 ;
(H2) x → (y → z) = (x ? y) → z ;
(H3) x ? (x → y) = y ? (y → x).

See e.g. [3]. A Wajsberg algebra is a hoop with a constant 0 satisfying
the identities:

(W1) (x → y) → y = (y → x) → x ;
(W2) 0 → x = 1.

Algebras equivalent to Wajsberg algebras have been studied under var-
ious names. (See [4] for a more complete list and historical summary.)
For example, bounded commutative BCK-algebras, introduced by K.
Isēki and S. Tanaka [12], and subsequently investigated by other au-
thors, are dual to Wajsberg algebras, and can be defined using only
the implication and one constant by a simpler set of axioms. An-
other equivalent version of Wajsberg algebras goes under the name of
MV -algebras : the algebras of infinitely-valued ÃLukasiewicz logic. Let
(A, ?,→, 0, 1) be a Wajsberg algebra. On the set A, define

¬x := x → 0

and

x⊕ y := ¬x → y.

Then (A,⊕,¬, 0, 1) is an MV -algebra. Abstractly, an MV -algebra is
defined as an algebra (A,⊕,¬, 0, 1) such that (A,⊕, 0) is a commutative
monoid, and satisfying the following identities:

(MV1) ¬¬x = x ;
(MV2) x⊕ ¬0 = ¬0 ;
(MV3) x⊕ ¬(y ⊕ ¬x) = x⊕ ¬(x⊕ ¬y).
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Defining

x ? y := ¬(¬x⊕ ¬y)

and

x → y := ¬(x ? ¬y) = ¬x⊕ y

in an MV -algebra, one obtains a Wajsberg algebra. Note that each
Wajsberg algebra is necessarily a bounded distributive lattice, with
the lattice operations given by

x ∧ y := x ? (x → y)

and

x ∨ y := (x → y) → y.

Now an LΠ-algebra is defined as a double hoop, an algebra

(A, ?,→, ·π,→π, 0, 1) ,

with two hoop reducts, where (A, ?,→, 0, 1) is a Wajsberg algebra (or
equivalently (A,⊕,¬, 0, 1) is an MV -algebra), and (A, ·π,→π, 0, 1) is a
hoop with 0, satisfying (W2) and the following identity:

(LΠ) x ·π (x →π y) = x ∧ y.

See e.g. [20], [5], and also [6]. Each LΠ-algebra is necessarily a bounded
distributive lattice. Moreover both implications are residuations. In
particular, the product implication x →π y is the largest z such that
x ·π z ≤ y, so we have the adjunction

z ≤ x →π y iff x ·π z ≤ y.

Similarly the ÃLukasiewicz implication x → y is the largest z such that
x ? z ≤ y, and

z ≤ x → y iff x ? z ≤ y.

An example is provided by the two element Boolean algebra 2, where
∨ = ⊕ and ∧ = ? = ·π; moreover x → y = x →π y, and ¬ is the usual
Boolean complement.

Another basic example is provided by the closed unit interval I of a
subfield R of R. The LΠ-algebra operations are defined on I as follows:

x ? y := 0 ∨ (x + y − 1) ;

x → y := 1 ∧ (1− x + y) ;

¬x := 1− x ;

x⊕ y := 1 ∧ (x + y) ;

x ·π y := x · y ;

x →π y := if x ≤ y then 1 else y/x .
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Define

xª y := 1− (1 ∧ (1− x + y))

and

x® y := y →π x .

Then as noticed by Montagna [20], the operations ⊕,ª, · and ® are
truncations to I of the four basic operations of addition, subtraction,
multiplication and division on R.

In similar fashion, one may define LΠ-algebra operations on the unit
interval U := {x ∈ F | 0 ≤ x ≤ 1} of each linearly ordered field F .
Such an LΠ-algebra is called an interval LΠ-algebra.

By [19, Corollary 5.9], the following conditions on an LΠ-algebra A
are equivalent:

(a) A is subdirectly irreducible;
(b) A is linearly ordered;
(c) A is simple.

Hence every LΠ-algebra is isomorphic to a subdirect product of linearly
ordered LΠ-algebras. By [6, Theorem 7], every linearly ordered LΠ-
algebra is isomorphic either to the interval algebra of a linearly ordered
field, or to the algebra 2. The variety of all LΠ-algebras is generated
by the interval LΠ-algebra defined on I ⊂ R ([19, Theorem 5.7]).

Note that for a given subfield R of R and Io ⊂ R, the convex barycen-
tric algebra (I, Io) can be described as a reduct of the LΠ-algebra I.
The operations p of the reduct are defined by

xyp = (x ·π ¬p)⊕ (y ·π p).

4. Abstract barycentric algebras

In the definition and axioms of barycentric algebras, all the necessary
algebraic operations from Io are actually operations of LΠ-algebras.
However, to make use of this structure, we need the closed unit in-
terval I rather than the open one, so we have to extend the set Io

of operations to the set I. This yields algebras (A, I), where the set
Io of operations is extended by adding two projections xy0 := x and
xy1 := y. (Cf. [28], where the author investigates barycentic alge-
bras under the name of “convexors,” and uses the closed unit interval
instead of the open one. The closed interval was also used by S. P.
Gudder [8].) The two projection operations are obviously idempotent,
skew-commutative, and associative. However, skew-associativity is not
always defined. This inconvenience will be overcome in the definition
given later, where barycentric algebras are specified as two-sorted al-
gebras. The definition is motivated by the observation above.
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First note, however, that the class of barycentric algebras (A, I)
has the same subdirectly irreducible members as the class B defined
earlier. The representation as subalgebras of PÃlonka sums of convex
sets remains valid for the reduct (A, Io). In the case where all the
operations p for p ∈ Io are equal, the algebra (A, I) has the semilattice
operation · = p and the two projections 0 and 1 as its basic operations.

An abstract barycentric algebra is a two-sorted algebra (A, J, F t{t})
— or simply (A, J) — with two sorts A and J , the set

F = {⊕,¬, ·π,→π, 0, 1}
of operations defined on J with values in J , and one ternary operation

t : A× A× J → A; (x, y, p) 7→ xyp =: p(y, x)

such that:
(A) (J, F ) is an LΠ-algebra;
(B) the operation t satisfies the following identities for x, y ∈ A and

p ∈ J :

0 (x, y) = y = 1(y, x) ;(4.1)

p (x, x) = x ;(4.2)

p (x, y) = ¬p (y, x) ;(4.3)

p (x, q (y, z)) = p ◦ q ((p ◦ q →π q)(x, y), z) .(4.4)

The derived operation ◦ is defined by p ◦ q := ¬((¬p) ·π (¬q)).
Let AB denote the class of abstract barycentric algebras.

Example 4.1. Basic examples are obtained from real barycentric al-
gebras (A, I). First note that skew-associativity holds for all p, q ∈ I.
This can easily be checked if one of p or q is 0 or 1. Now note that

p ◦ q = (p′q′)′ = q1p.

Hence for p, q ∈ Io, one has q < q1p. It follows that

(p ◦ q) →π q = q/(p ◦ q).

Moreover,
(0 ◦ 0) →π 0 = 0 →π 0 = 1,

(1 ◦ 1) →π 1 = (0 ◦ 1) →π 1 = 1 →π 1 = 1

and
(1 ◦ 0) →π 0 = 1 →π 0 = 0/1 = 0.

This implies skew-associativity in the remaining cases. Note that skew-
associativity for (A, I) may be written as

(4.5) xyp zq = x yz(p ◦ q →π q) p ◦ q.
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The corresponding abstract barycentric algebra has two sorts A and
J = I. Moreover, (I, F ) is an interval LΠ-algebra as defined in Section
3, and the ternary operation t is given by

t : A× A× I → A; (x, y, p) 7→ xyp =: p(y, x).

Example 4.2. Consider an abstract barycentric algebra (A, J, Ft{t}),
where J = {0, 1} and (J, F ) is a two element Boolean algebra 2. Note
that 2 may be considered as the interval LΠ-algebra of the integral
domain Z of integers. The two basic operations of the single-sorted
algebra (A, J) are given by xy0 = x and xy1 = y. This gives A the
structure of an algebra with one left-zero and one right-zero operation.
Note that each abstract barycentric algebra (A, J, F t {t}) has the
subalgebra (A, {0, 1}, F t {t}) that will be denoted as (A,2).

5. Concrete and abstract barycentric algebras

Basic concepts for many-sorted algebras, such as subalgebras, di-
rect products, and homomorphic images, are defined in the usual way,
“componentwise.” (See e.g. [2], [7], [31].) We will first use these con-
cepts to analyze the structure of abstract barycentric algebras obtained
from real barycentric algebras (cf. Example 4.1.) For a barycentric al-
gebra (A, I), its two-sorted counterpart will be called its two-sorted or
abstract companion, or just the companion. Similarly, if an abstract
barycentric algebra (A, J), with J = I, is a companion of a one-sorted
barycentric algebra (A, I), then (A, I) will be called the (one-sorted)
companion of (A, I).

The direct product
∏

k∈K(Ak, Ik) of abstract barycentric algebras
(Ak, Ik), where Ik = I for each k ∈ K, is the algebra (

∏
Ak,

∏
Ik) with

the operations defined componentwise. Let Î be the subset of
∏

Ik

consisting of functions f such that f(k) = p for all k ∈ K and some p ∈
I. Obviously, (Î , F ) ≤ ∏

(Ik, F ), and (Î , F ) is isomorphic with (I, F ).

It is also easy to see that (
∏

Ak, Î) is a subalgebra of (
∏

Ak,
∏

Ik). The

algebra (
∏

Ak, Î) has the barycentric algebra (
∏

Ak, I) as a companion.
The companions of subalgebras (B, I) of the latter algebra are precisely

the subalgebras (B, Î) of the algebra (
∏

Ak, Î).
The companions of convex sets (A, I) over R are easy to describe.

First recall that the class C of convex sets is equal to the class SP(R)
of subalgebras of powers of the convex set R. (See e.g. [27, Chapter
7], where the relevant results — especially Corollary 7.2.4 and Lemma
7.6.3 — are formulated for Io-algebras, but hold equally well for I-
algebras.) Thus each convex set is a subalgebra, say (C, I), of the
algebra (Rk, I) for some cardinal k. The latter algebra has the abstract
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companion (Rk, Î), and its subalgebra C has the companion (C, Î).
This shows the following.

Proposition 5.1. Each convex set (C, I) over a field R has a compan-

ion. If (C, I) is a subalgebra of (Rk, I), then its companion (C, Î) is a

subalgebra of (Rk, Î) ≤ (Rk, Ik) = (R, I)k.

Each Io-semilattice (A, Io) is term equivalent to the semilattice (A, ·),
where · = p for each p ∈ Io. The corresponding I-algebra counterpart
(A, I) is term equivalent to (A, ·, 0 , 1 ). Its abstract companion (A, I)
satisfies the identities

p(x, y) = q(x, y)

for all (p, q) ∈ Io × Io, or equivalently

t(x, y, p) = t(x, y, q).

A congruence relation θ of an abstract barycentric algebra (A, J) is
a pair (θ1, θ2) of equivalence relations on A and J , respectively, such
that (θ1, θ2) ≤ (A, J)2. In particular, θ2 is a congruence of (J, F ).

Proposition 5.2. Let θ = (θ1, θ2) be a congruence of an abstract

barycentric algebra (A, I). Let θ2 = Î, the equality relation on I. Then
θ is a congruence of (A, I) precisely if θ1 is a congruence of its com-
panion (A, I).

Proof. Since θ2 = Î, it follows that (p, p′) ∈ θ2 iff p = p′. Hence θ is a
congruence precisely if

(a1, a
′
1) ∈ θ1, (a2, a

′
2) ∈ θ1 implies (a1a2p, a

′
1a
′
2p) ∈ θ1.

This means that θ1 is a congruence of (A, I). ¤
Proposition 5.2 shows that all homomorphic images of real convex

sets have abstract companions. As each real barycentric algebra is a
homomorphic image of a convex set, this implies the following corollary.

Corollary 5.3. Each barycentric algebra (A, I) (a homomorphic image
of a convex set) has an abstract companion (a homomorphic image of
a companion of this convex set).

Another corollary yields a class of subdirectly irreducible algebras.

Corollary 5.4. An abstract barycentric algebra (A, I), with |A| > 1, is
subdirectly irreducible iff its companion (A, I) is subdirectly irreducible.

Proof. It is enough to note that (I, F ) has only two congruences, Î and
the improper congruence I × I, and obviously for each congruence θ1

of (A, I), the congruence (θ1, Î) ≤ (θ1, I × I). ¤
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Lemma 5.5. Let θ = (θ1, θ2) be a congruence of a barycentric alge-

bra (A, J). Let θ1 = Â, the equality relation on A. Then A consists
precisely of one element.

Proof. Since θ1 = Â, it follows that (a, a′) ∈ θ1 iff a = a′. Hence θ is a
congruence precisely if

(a1a2p, a1a2p
′) ∈ θ1

for all p, p′ ∈ I. But θ1 = Â implies that

a1a2p = a1a2p
′.

In particular 0 = 1 and x = xy0 = xy1 = y, whence |A| = 1. ¤

Corollary 5.6. An abstract barycentric algebra (A, I) with |A| = 1 is
subdirectly irreducible (and indeed simple).

6. Boolean affine spaces and barycentric algebras

Let R be a commutative ring. Affine spaces over R are characterized
algebraically in [25] and [27]. In particular, if R is a Boolean ring B, we
speak of Boolean affine spaces or affine B-spaces. For a given Boolean
ring B, the class B of affine B-spaces is a variety, characterized as
equivalent to the variety of all Mal’cev modes (A,P, B) with the ternary
Mal’cev operation P and binary operations p, for p ∈ B, satisfying the
identities:

xy0 = x = yx1 ;(6.1)

xyp xyq r = xypqr ;(6.2)

(xyp xyq xyr)P = xypqrP .(6.3)

This is an immediate corollary of [27, Theorems 6.3.3 and 6.3.4]. See
also [25]. Other identities true in all Boolean affine spaces include:

yxyP = xy2 = x ;(6.4)

xxyp q = xypq .(6.5)

In each Boolean affine space (A,P,B), the basic operations are defined
by

xyzP = x + y + z and xyp = x(1 + p) + yp

for each p ∈ B.

Proposition 6.1. Each Boolean affine space (A, P,B) satisfies the
identities of skew-commutativity and skew-associativity for all p, q ∈ B.
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Proof. The skew-commutativity follows directly by

xyp = x(1 + p) + yp = yx(1 + p).

To show that the skew-associativity (4.5) holds as well, first note that
in a Boolean ring B one has

p ◦ q = p + q − pq = p + q + pq = p ∨ q

and
p → q = p →π q = p′ ∨ q.

Now for p, q ∈ B,

p ◦ q → q = (p ◦ q)′ ∨ q = (p ∨ q)′ ∨ q = (p′q′) ∨ q = p′ ∨ q = p → q.

This implies that when p and q are elements of a Boolean ring B, the
identity of skew-associativity can be written as follows:

(6.6) xyp zq = x yz(p′ ∨ q) p ∨ q.

And indeed in a Boolean affine space we have:

xyp zq = (x(1 + p) + yp)(1 + q) + zq

= x(1 + p + q + pq) + yp(1 + q) + zq

= x(p ∨ q)′ + ypq′ + zq

= x(1 + (p ∨ q)) + y(1 + (p′ ∨ q)) + z(p′ ∨ q)(p ∨ q)

= x yz(p′ ∨ q) p ∨ q.

Hence skew-associativity holds for all p, q ∈ B. ¤
Note the following consequences of the skew-associativity (6.6):

xyp zp = xzp,(6.7)

x yzp p = xzp.(6.8)

Indeed,
xyp zp = x yz(p′ ∨ p) (p ∨ p) = xzp

and

x yzp p = yzp x p′ = yzp x (1 + p)

= y zx(1 + p) 1 = y zxp′ 1 = zxp′ = xzp.

This means that each of the operations p is in fact a rectangular band
operation. An entropic algebra (A, Ω) with a rectangular band op-
eration · commuting with the operations in Ω decomposes as a di-
rect product (A1, Ω) × (A2, Ω) such that (A1, Ω) satisfies the identity
x · y = x (i.e. (A1, ·) is a left-zero band), and (A2, Ω) satisfies the
identity x · y = y (i.e. (A2, ·) is a right-zero band) [27, Theorem 1.3.2].
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It follows that each of the operations p for p ∈ B − {0, 1} decomposes
the algebra (A,B) as a product (A1, B) × (A2, B) such that (A1, B)
satisfies xyp = x and (A2, B) satisfies xyp = y. In particular, if B is
a finite 2n-element Boolean algebra, then (A,B) is a direct product of
22n−2 projection algebras (Ai, B), where each of the operations p is a
left- or a right-zero operation.

The binary reducts (A,B) of Boolean affine spaces (A,P, B) are B-
sets in the sense of G. Bergman [1] and T. Stokes [29]. As shown by T.
Stokes, for a given B, the variety of B-sets consists of the subalgebras
of such reducts. This variety is defined by the following identities:

(1) 0(x, y) = y ;
(2) p(x, x) = x ;
(3) ¬p(x, y) = p(y, x) ;
(4) pq(x, y) = p(q(x, y), y) ;
(5) p(p(x, y), z) = p(x, z) ;
(6) p(x, p(y, z)) = p(x, z) .

Note that the first three identities are just the identities (4.1), (4.2) and
(4.3) from the definition of abstract barycentric algebras. The fourth
identity is the identity (6.5) written in prefix notation, while the fifth
and sixth identities are (6.7) and (6.8) written in prefix notation. Note
also that any two operations p and q of an abstractly defined B-set are
mutually entropic. (See [30].)

Bergman’s motivation for investigating B-sets came from sheaf the-
ory. But the algebras also served as a foundation for the notion of
“if-then-else” (see McCarthy [18] and Manes [17], and also [29] and
[30]). In [18], p(x, y) is viewed as the statement “if p then x else y”.
We return to Manes’ approach in Example 6.4.

Corollary 6.2. Let B be a Boolean ring. Then B-sets (considered as
binary subreducts of affine B-spaces) can be viewed as abstract barycen-
tric algebras.

Proof. Each subalgebra (C, B) of the reduct (A,B) of a given B-space
(A,P, B) can be considered as a two-sorted algebra (C, B), where B is
a Boolean algebra and t : C × C × B : (x, y, p) 7→ p(y, x) = xyp. All
the axioms of abstract barycentric algebras are satisfied. ¤

Corollary 6.2 justifies the name of Boolean barycentric algebras for
B-sets.

Example 6.3. One of the standard examples of B-sets is given by
a Cartesian product

∏
k∈K Ak of sets Ak, with the Boolean algebra

B = P(K) of all subsets of the index set K. The B-action is defined
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for all p ∈ B by

p(k)(a, b) = if k ∈ p then a(k) else b(k)

[30]. Such a B-set has an abstract companion

(
∏

k∈K

Ak, B) = (
∏

k∈K

Ak,P(K)) ∼= (
∏

k∈K

Ak,2
K) .

It is easy to see that the latter algebra is isomorphic to the product∏
k∈K(Ak,2) of the two-sorted barycentric algebras from Example 4.2.

Example 6.4. Consider a family of I-semilattices (Ak, I) for k ∈ K,
each term equivalent to (Ak, ·, 0 , 1 ). The corresponding abstract com-
panions are (Ak, I). Let B = 2K . Then the direct product

∏

k∈K

(Ak, I) ∼=
( ∏

k∈K

Ak, I
K

)

contains the B-set ( ∏

k∈K

Ak, B
)

as a subalgebra. Moreover t(a, b, p) = t(a, b, q) for all p, q ∈ Io, so that
p = q is in fact a semilattice operation · on

∏
k∈K Ak, entropic with

the operations p for p ∈ B. It follows that (
∏

k∈K Ak, B, ·) and its
subalgebras are in fact semilattice modes (see [15]) or entropic modals
(see [27, Chapter 10]). On the other hand, Stokes [29] observed that
when semilattices (bounded below) are interpreted as join semilattices,
such algebras are equivalent to the if-then-else algebras of Manes [17].

7. Rectangular algebras

We will show that B-sets are also equivalent to certain modes ob-
tained in a totally different way. Call a mode (A, (pk)k∈K) a rectangular
K-mode when each of the operations pk is a rectangular band opera-
tion. In particular, each operation p ∈ {pk | k ∈ K} is idempotent and
satisfies the identities

(7.1) x yzp p = xyp z p = xzp .

Moreover, these operations are mutually entropic. Note that the class
REK of rectangular K-modes is a variety. If the set K is finite, these
algebras are binary rectangular algebras as considered in [23] and [32].
Many properties of these algebras carry over to rectangular modes with
infinitely many operations. It is easy to see that B-sets are rectangular
modes. We will show that rectangular modes are equivalent to B-sets.
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Lemma 7.1. The binary derived operations of a rectangular K-mode
(A, (pk)k∈K) are all rectangular band operations.

Proof. First note that each operator · = pk, for k ∈ K, determines four
binary operations: x·y, y ·x and two projections (x·y)·(y ·x) = x =: xy0
and (y ·x) · (x ·y) = y =: xy1. Now assume that |K| > 1. We will show
that for any three (derived) binary rectangular band operations p, q, r,
their composition

(7.2) x ◦ y := xyp xyq r

is again a rectangular band operation. i.e. it satisfies the identities

(x ◦ y) ◦ z = x ◦ (y ◦ z) = x ◦ z.

Let us calculate that, indeed, the first and last expressions form a true
identity. The proof that the first and the second one are equal is similar.

(x ◦ y) ◦ z = [(x ◦ y)zp] [(x ◦ y)zq] r

= [(xyp xyq r)zp] [(xyp xyq r)zq] r

= [(xyp zp) (xyq zp)r] [(xyp zq) (xyq zq) r)] r (by entropicity)

= (xyp zp) (xyq zq) r (by rectangularity)

= xzp xzq r = x ◦ z.

It follows that indeed each binary derived operation is a rectangular
band operation. ¤

Lemma 7.1 also follows from the fact that the identities defining
general rectangular modes are in fact hyperidentities. (See [23].)

Lemma 7.2. The binary derived operations of a rectangular K-mode
(A, (pk)k∈K) form a Boolean algebra generated by the basic operations.

Proof. Let B be the set of all (derived) rectangular band operations of
(A, (pk)k∈K). For p, q ∈ B, define

xyp′ := yxp

and

xy(pq) := xxyp q.

Note that p′ and pq are also rectangular band operations, and that
by the entropic law, pq = qp. This multiplication on B is known to
be associative. Indeed, xy(p · qr) = x (xyp) (qr) = x (xxyp q) r =
x(xy(pq))r = xy(pq · r). As evidently pp = p, it follows that the
multiplication just defined is a semilattice operation. Now define

xy(p ∨ q) := xy(p′q′)′ = xyp yq.
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As in the case of multiplication, the operation ∨ is also a semilattice
operation. Moreover

xy(p ∨ pq) = (xyp) (xyp yq) p = x (xyq yp) p = xyp.

Similarly, xy(p(p ∨ q)) = xyp. This shows that (B, ·,∨) is a lattice. It
is easy to check that the projections 0 and 1 are bounds of this lattice,
and that p ∨ p′ = 1 and pp′ = 0. Distributivity is checked in similar
fashion:

xyp(q ∨ r) = xxyp (q ∨ r) = (xxyp q) (xyp) r

= (x xyp q) [(xxyp q) y p] r (by rectangularity

= (x xyp q) y (pr) = xy(pq) y (pr) = xy(pq ∨ pr).

It follows that (B, ·,∨,′ , 0, 1) is a Boolean algebra, generated by the
operations pk for k ∈ K. ¤
Proposition 7.3. Each rectangular K-mode (A, (pk)k∈K) is term equiv-
alent to the B-set (A,B), where B is the Boolean algebra of rectangular
band operations of (A, (pk)k∈K).

Proof. The proof follows directly by the two lemmas above. ¤
The lattice L(MR) of subvarieties of the variety MR of modules

over a (unital) commutative ring R is dually isomorphic to the lattice
of ideals of the ring R, and isomorphic to the lattice L(R) of subvarieties
of the variety R of affine R-spaces [27, Section 5.3]. In particular, these
isomorphisms obtain for each variety B of Boolean affine spaces over a
Boolean ring B.

Proposition 7.4. For a given Boolean ring B, the lattice of subvari-
eties of the variety B of affine B-spaces and the lattice of subvarieties
of the variety BS of B-sets are isomorphic, i.e.

L(B) ∼= L(BS).

Proof. Each variety of algebras is generated by the free algebra over
a countably infinite set X of generators. The free affine B-space XB
consists of linear combinations

∑n
i=1 xipi with pi ∈ B and

∑n
i=1 pi = 1

[27, Chapter 6]. On the other hand, it is an immediate consequence of
[24, Lemmas 6.1, 6.2] that the free algebra over X in the (quasi)variety
BS of subreducts (S,B) of affine B-spaces (A,B, P ) is isomorphic to
the B-subreduct of XB generated by X, and consists of linear com-
binations with coefficients in the free B-algebra on two generators.
Equivalently, as independently shown by Bergman [1], the free algebra
consists of those linear combinations satisfying the additional condi-
tion that pipj = 0 whenever i 6= j. Note that the free affine B-space
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{0, 1}B on two free generators 0 and 1 is built on the ring B, and the
free BS-algebra on two generators 0 and 1 is just the B-subreduct of
{0, 1}B generated by 0 and 1.

Now it suffices to assign to each subvariety B′ of the variety B (gen-
erated by the free algebra XB′) the subvariety B′S of BS (generated
by the B′-subreduct of XB′). This is a lattice isomorphism. ¤

Note that when B is a free Boolean ring over a set X, the free B-set
XBS does not satisfy any identities that are not consequences of the
defining identities of B-sets or the axioms of Boolean algebras. The
same is true for the variety REX of rectangular X-modes. In such a
case, Corollary 7.3 implies the following.

Corollary 7.5. Let B be the free Boolean ring over {pk | k ∈ K}.
Let BSK be the variety of B-sets, and let REK be the variety of rect-
angular K-modes (A, (pk)k∈K). Then the varieties BSK and REK are
equivalent. Moreover

L(BSK) ∼= L(REK).

Note that each subvariety of REK is determined by an ideal of B.
As easy corollaries of Lemmas 4.1, 4.2, 4.4 of [32], one obtains that

each mode in the varietyREn of rectangular modes with a finite number
n of basic operations embeds as a subreduct into an affine space over
the affinization ring

R = Z[X1, . . . , Xn]/〈Xi(1−Xi) | i = 1, . . . , n〉 ∼= Z2n

of the variety REn [27, Chapter 7]. The operations pk are defined as
the affine space operations xypk = xyXk. The ring Z2n

contains the
Boolean ring 22n

as a subreduct, and the corresponding rectangular
mode embeds into a module over this ring.

In the more general setting considered here, an embedding of rect-
angular modes as subreducts into affine B-modules follows from the
general theory of modes, much as in the case of rectangular modes
with finitely many basic operations. The affinization ring of the va-
riety REK is calculated in standard fashion [27, Section 7.1] as the

ring R(REK) = Z[{Xk}]/〈{Xk(1 − Xk)} | k ∈ K〉 ∼= Z2|K| . Then the
structure of rectangular modes is described by the following lemma.

Lemma 7.6. Each rectangular mode (A, (pk)k∈K) is a subdirect product
of projection rectangular modes.

Proof. For each k ∈ K, define two binary relations θ1
k and θ2

k on A by

θ1
k := {(a, b) | abpk = b} and θ2

k := {(a, b) | abpk = a}.
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These two relations form a pair of factor congruences on (A, (pk)k∈K)

[27, Section 1.3], so that A ∼= A/θ1
k ×A/θ2

k. In particular, θ1
k ∧ θ2

k = Â,
the equality relation on A.

Now for each function f : K → {1, 2}, define

θf :=
∏

k∈K

θ
f(k)
k .

It is easy to see that each Af := A/θf is a projection mode. Let
K := {f : K → {1, 2}}. Evidently,

∏

f∈K

θf = Â.

It follows that (A, (pk)k∈K) is a subdirect product of the algebras
(Af , (pk)k∈K). ¤
Corollary 7.7. Each rectangular mode embeds as a subreduct into an
affine Boolean space.

The proof of Corollary 7.7 is very similar to the corresponding proof
for the case where the number of rectangular operations is finite [32].
One represents a rectangular mode A as a subdirect product of pro-
jection rectangular algebras, as in Lemma 7.6. Then one embeds these
projection algebras into corresponding modules, and finally one embeds
the product of projection algebras into the product of the correspond-
ing modules. Note that this embedding uses only the operations X, so
that in fact the embedding is into a module over the Boolean subring
of the ring R(REK). In particular, this provides an alternative proof
of the Stokes embedding theorem.
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[12] K. Isēki and S. Tanaka, An introduction to the theory of BCK-algebras, Math-

ematica Japonica 23, 1-26.
[13] R. E. Jamison-Waldner, Functional representation of algebraic intervals, Pa-

cific J. Math. 53 (1974), 399–423.
[14] K. A. Kearnes, Idempotent simple algebras, in Logic and Algebra, Proc. of

the Magari Memorial Conference, Siena, 1994, Dekker, New York, 1996, pp.
520–572.

[15] K. Kearnes, Semilattice modes I: the associated semiring, Algebra Universalis
34 (1995), 220–272.
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