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REAL AFFINE SPACES

Given a vector space (a module) A over a field

(a subring R of) R.

An affine space A over R (or affine R-space)

is the algebra(
A,

n∑
i=1

xiri

∣∣∣∣ n∑
i=1

ri = 1
)
.

In the case 2 ∈ R is invertible, this algebra is

equivalent to

(A,R),

where

R = {f | f ∈ R}

and

xyf = f(x, y) = x(1− f) + yf.
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REAL CONVEX SETS and

BARYCENTRIC ALGEBRAS

Let R be a subfield of R and

Io :=]0,1[= (0,1) ⊂ R.

Convex subsets of affine R-spaces are

Io-subreducts (A, Io) of R-spaces.

Real polytopes are finitely generated convex

sets, real polygons are finitely generated con-

vex subsets of R2.

The class C of convex sets generates

the variety BA of barycentric algebras.
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DYADIC CONVEX SETS

Consider the ring

D = Z[1/2] = {m2−n | m,n ∈ Z}

of dyadic rational numbers.

A dyadic convex set is the intersection of a

real convex set with the space Dk.

A dyadic polytope is the intersection of a real

polytope and Dk, with vertices in Dk.

A dyadic triangle and dyadic polygon are (re-

spectively) the intersection with D2 of a trian-

gle or polygon in R2, with vertices in D2.

Dyadic intervals form the one-dimensional ana-

logue.
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REAL VERSUS DYADIC

• Real polytopes are barycentric algebras (A, Io).

Dyadic polytopes are algebras (A,Do
1),

where Do
1 =]0,1[∩D.

Proposition Each dyadic polytope (A,Do
1) is

equivalent to (A, ·) = (A, 12(x+ y)).

Note that the operation · is

idempotent: x · x = x,

commutative: x · y = y · x,
entropic (medial): (x ·y) ·(z · t) = (x ·z) ·(y · t).

Hence:

dyadic polytopes are commutative binary modes

(or CB-modes).
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MODES

An algebra (A,Ω) is a mode if it is

• idempotent:

x...xω = x,

for each n-ary ω ∈ Ω, and

• entropic:

(x11...x1nω)...(xm1...xmnω)φ

= (x11...xm1φ)...(x1n...xmnφ)ω.

for all ω, φ ∈ Ω.

Affine R-spaces and barycentric algebras are

modes.

Subreducts (subalgebras of reducts) of modes

are modes
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REAL VERSUS DYADIC, cont.

• All real intervals are isomorphic (to the in-
terval I = [0,1] = S1). Each is generated by
its ends.
All real triangles are isomorphic (to the simplex
S2). Each is generated by its vertices.

NOT TRUE for dyadic intervals and dyadic
triangles.

Example The dyadic interval [0,3] is gener-
ated by no less than 3 elements. The minimal
set of generators is given e.g. by the numbers
0,2,3.

• The class of convex subsets of affine R-spaces
is characterized as the subquasivariety of can-
cellative barycentric algebras.

NOT TRUE for the class of convex dyadic
subsets of affine D-spaces.
(K. Matczak, A. Romanowska)
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PROBLEMS

Which characteristic properties of real poly-

topes (in particular polygons) carry over to

dyadic polytopes (polygons)?

Note that dyadic polygons are described using

dyadic intervals and dyadic triangles.

Problems:

Are all dyadic intervals finitely generated?

Are all dyadic triangles finitely generated?

Problem: Classify all dyadic intervals and

all dyadic triangles up to isomorphism.

Isomorphisms of dyadic polytopes are described

as restrictions of automorphisms of the affine

dyadic spaces, members of the affine group

GA(n,D).
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RELATED PROBLEMS

Problem: Are all finitely generated sub-

groupoids of the groupoid (D, ·) intervals?

Problem: Are all finitely generated sub-

groupoids of the groupoid (D2, ·) polygons?

Problem: Characterise finitely generated

subgroupoids of the groupoid (D2, ·) which

are triangles.
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DYADIC INTERVALS

The isomorphism classes of dyadic intervals are
determined by the orbits of GL(1,D) on the set
of nonzero dyadic numbers.

THEOREM [K. Matczak, A. Romanowska, J.
D.H. Smith] Each interval of D is isomorphic
to some interval [0, k] (is of type k), where k

is an odd positive integer. Two such intervals
are isomorphic precisely when their right hand
ends are equal.

The interval [0,1] is generated by its ends.
For each positive integer k, and each integer r,
the intervals [0, k], [0, k2r] and [d, d + k2r] are
isomorphic.

THEOREM Each dyadic interval of type
k > 1 is minimally generated by three integers
0, z, k, where 0 < z < k and gcd{z, k} = 1,
e.g. by 0,2n, k, where n = ⌊log2 k⌋.
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DYADIC INTERVALS, cont.

The unit interval D1 contains infinitely many

subintervals of each type k for k ∈ 2N+1,

and infinitely many finitely generated subgroupoids

which are not necessarily intervals.

Example The elements 0,3/16,6/16,9/16 gen-

erate a subgroupoid of D1 which does not coin-

cides with the interval [0,9/16]. Note however,

that this subgroupoid is isomorphic to the in-

terval [0,3].

Lemma If G is a subgroupoid of (D, ·) (finitely)

generated by dyadic numbers g1 < · · · < gr,

then G is isomorphic to a subgroupoid gener-

ated by some integers 0 = z1 < z2 < · · · < zr.

If one of zi is one, then G coincides with the

interval [0, zr].
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Proposition Assume that G has at least three

generators zi. Then gcd{z2, . . . , zr} = 2n for

some natural number n if and only if G coin-

cides with the interval [0, zr].

Lemma If g := gcd{z2, . . . , zr} ̸= 1, then G is

isomorphic to the subgroupoid H of D gener-

ated by 0 = z1/g, z2/g, . . . , zr/g with

gcd{z2/g, . . . , zr/g} = 1.

Theorem Each finitely generated subgroupoid

of (D, ·) is isomorphic to some interval of D.

Corollary [A. Mucka, K. Matczak, A. Romanowska]

A subgroupoid of (D, ·) is isomorphic to an in-

terval of D if and only if it is finitely generated.
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DYADIC TRIANGLES AND
THEIR BOUNDARY TYPES

The types m,n, k of sides of a triangle deter-
mine its boundary type (m,n, k).

Theorem [K. Matczak, A. Romanowska, J. D.
H. Smith] The triangles of right type (i.e.with
shorter side parallel to the coordinate axes) are
determined uniquely up to isomorphism by its
boundary type.

If the types of shorter sides are m and j, then
the hypotenuse is of type gcd{m, j}.

The boundary type does not determine a gen-
eral dyadic triangle.

Proposition There are infinitely many pair-
wise non-isomorphic triangles of boundary type
(1,1,1).

There are triangles in D not isomorphic to right
triangles.
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TYPES OF DYADIC TRIANGLES

Automorphisms of the dyadic plane D2 are de-

scribed as elements of the affine group GA(2,D).
These automorphisms transform any of the

triangles in the plane D2 into an isomorphic

triangle.

Lemma Each dyadic triangle is isomorphic to

a triangle ABC contained in the first quadrant,

with A located at the origin. Moreover, the

vertices B and C may be chosen so that they

have integral coordinates.

-
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A point A = (p2q, u2v) of D2, where p, u, q and
v are integers, with p and u being odd, is said
to be axial if

gcd{p, u} ∈ {p, u,1} .

Lemma A D-module automorphism of the plane
D2 transforms A into a point on one of the axes
if and only if A is axial.

A classification of dyadic triangles depends on
the existence of axial vertices.

THEOREM Each dyadic triangle, located as
in the lemma, belongs to one of three basic
types (with m,n, j positive integers):

• triangles isomorphic to right triangles T0,j,m,0
(with vertices (0,0), (m,0) and (0, j));
• triangles isomorphic to triangles Ti,j,m,0
(with vertices (0,0), (i, j), (m,0));
• triangles in which neither B nor C is axial.
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Definition Let i, j,m, n be non-negative inte-

gers such that 0 ≤ i < m, 0 ≤ n < j, and with

odd gcd{i,m} and gcd{j, n}. The quadruple

(i, j,m, n) is said to be an encoding quadru-

ple if it satisfies the following conditions:

• if i = n = 0, then j and m are odd and j ≤ m;

• if one of i and n is zero, then this is n, and

in this case i ≤ m/2, j > 1 and is odd, and

moreover gcd{i, j} ̸= j;

• if none of i, n is zero, then j ≤ m, gcd{i, j} /∈
{i, j,1} and gcd{m,n} /∈ {m,n,1}.

Definition For each encoding quadruple (i, j,m, n),

we define a representative triangle Ti,j,m,n as

a dyadic triangle ABC located in the dyadic

plane with vertices A = (0,0), B = (i, j), C =

(m,n), as in Figure.
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Theorem Each dyadic triangle is isomorphic

to some representative triangle Ti,j,m,n. Two

dyadic triangles are isomorphic if and only if

they are both isomorphic to the same repre-

sentative triangle Ti,j,m,n.

Definition If a dyadic triangle is isomorphic to

some representative triangle Ti,j,m,n, then we

will say that it is of triangle type (i, j,m, n).
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Proposition (a) If a triple (r, s, t) of odd pos-

itive integers satisfies the condition

gcd{r, s} = gcd{r, t} = gcd{s, t}, (1)

then there is a dyadic triangle of boundary type

(r, s, t).

(b) If T is a representative triangle Ti,j,m,n with

the types of sides r, s and t, then r, s, t satisfy

the condition (1), and moreover

gcd{r, s} = gcd{i, j,m− i, j − n}. (2)

If (r, s, t) is a boundary type of a dyadic

triangle, then the condition (1) holds precisely

when each of the three types r, s, t is a linear

combinations of the other two.
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FINITE GENERATION

The classification of dyadic triangles given above

provided a basis for proving the following.

THEOREM Each dyadic triangle is finitely

generated.

COROLLARY Each dyadic polygon is finitely

generated.
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