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Abstract. The conjugacy classes of groups and quasigroups form
association schemes, in which the relation products are defined by
collapsing group or quasigroup multiplications. In previous work,
sharp transitivity was used to identify association schemes, such
as certain Johnson schemes, which cannot appear as quasigroup
schemes. Thus quasigroup schemes only constitute a fragment of
the full set of all association schemes. Nevertheless, the current
paper shows that every association scheme is in fact obtained by
collapsing a quasigroup multiplication. In a second application
of a similar technique, character quasigroups are constructed for
each finite group, as analogues of the character groups of abelian
groups, to encode the multiplicative structure of group characters.
As infrastructure for these and related results, three key unifying
concepts in compact closed categories are established: augmented
comagmas, augmented magmas, and augmented quasigroups, the
latter serving to capture such diverse structures as groups and
Heyting algebras.
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1. Introduction

The ordinary character theory of finite groups emerged by the early
twentieth century as an extension of discrete Fourier analysis and the
character theory of abelian groups. Although it is now conventional
to treat characters as traces of matrix representations or modules, the
initial approach made use of the algebra of conjugacy classes [7, 11].
Continued by Kawada’s work on character algebras [18], the approach
developed into the theory of association schemes, also identified as
algebraic combinatorics, and characterized as “group theory without
groups” [3]. In particular, fusion algebras (as known, for example, in
conformal field theory) were shown to correspond to character algebras
[2].

When ordinary representation theory is further extended from groups
to quasigroups (thus keeping the cancellativity, but no longer insisting



AUGMENTED QUASIGROUPS 3

on associativity [§2.3.1]), it transpires that the theories of modules and
characters diverge [28]. Module theory studies vector space or abelian
group objects in slice categories over a quasigroup, but the character
theory continues to work with the original conjugacy class approach
used for groups. The only change, forced by the potential absence of
an identity element, is the need to replace inner automorphism group
orbits on a group by multiplication group orbits on the direct square
of a quasigroup [§2.3.2].

The association schemes obtained in this way from quasigroups are
certainly rather special, and techniques such as sharp transitivity have
been used to identify association schemes which cannot be quasigroup
conjugacy class schemes [§2.3.3]. Thus it was long considered that
quasigroup theory could only be relevant to a small part of algebraic
combinatorics. A primary goal of the paper is to show that this is
in fact quite far from the truth: Every association scheme, not just
those coming from group or quasigroup conjugacy classes, actually lifts
to a quasigroup [§5.2]. Since quasigroups are obtained from groups,
namely as quotients by subgroups which are not necessarily normal
(Appendix A), this result may be said to bring general association
schemes back into groups.

Each abelian group A of finite order n has a character group Ã of
the same order n, non-canonically isomorphic to A, where products in

Ã determine the products of the characters. The second main goal of
the paper is to find an analogue of the character group that works for
the noncommutative case. Given an arbitrary group A of finite order

n, we identify character quasigroups Ã of order n, such that products

in Ã determine the products of the characters [§5.4]. In particular, the
character group of an abelian group is its unique character quasigroup.

While the character group Ã of a commutative group A determines A

up to isomorphism, the character quasigroups Ã of a noncommutative
group A cannot determine A uniquely. For example, the quaternion
group Q8 and dihedral group D4 of order 8 share the same character
quasigroups.

The third main goal of the paper is to bring some order into the
abundance of different algebras that appear in algebraic combinatorics.
Since these algebras usually come with a preferred basis, such bases
should be identified in a canonical fashion. Working in the context of
compact closed categories, modeled for instance by categories of finite-
dimensional vector spaces over a given field, or by relations on sets,
three levels of abstract structures are identified:

• augmented comagmas [Definition 3.14(c)];
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• augmented magmas [Definition 3.6], and
• augmented quasigroups [Definition 4.1(f)].

Augmented comagmas comprise multisets and sets, as shown in §3.4.
In turn, fusion algebras form augmented magmas [Theorem 3.30(b)].
Then augmented quasigroups embrace a wide range of structures, from
quasigroups themselves [Example 4.14] in various categories, through
group algebras [Example 4.2] and Heyting algebras [Example 4.5], to
association schemes [Corollary 4.17], character algebras [Theorem 4.19],
dual schemes [Corollary 4.20] and fusion algebras [Corollary 4.21].

2. Combinatorial algebras of algebraic combinatorics

Algebraic combinatorics makes use of a wide range of algebras, many
of which are closely related, but differ in certain subtle details. For an
excellent survey, see [4]. This chapter will introduce the structures
forming the backbone of the paper. Together with other structures,
they will subsequently fit in to the general compact-closed categorical
approach introduced in the two following chapters.

2.1. Character algebras and fusion algebras.

2.1.1. Character algebras. These algebras were formalized by Kawada
[2, Defn. 2.3], [3, §2.5], [18, §2].

Definition 2.1. A finite-dimensional, commutative, associative, unital
algebra A over C is said to be a character algebra if it has a basis
{1 = x1, x2, . . . , xs} equipped with an involution xi 7→ xi′ , and real
structure constants pkij with

xixj =
s∑

k=1

pkijxk

for 1 ≤ i, j ≤ s, such that:

(a) ∀ 1 ≤ i, j, k ≤ s , pk
′

i′j′ = pkij ;

(b) ∀ 1 ≤ i ≤ s , ∃ κi > 0 . ∀ 1 ≤ j ≤ s , p1
ij = δij′κi ; and

(c) A→ R : xi 7→ κi is a representation of A.

A character algebra A is of nonnegative type whenever the structure
constants pkij are all nonnegative.

2.1.2. Fusion algebras. There are three flavors of these algebras, which
were formalized in [2] as “fusion algebras at [the] algebraic level”.
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Definition 2.2. A finite-dimensional, commutative, associative, unital
algebra A over C is a fusion algebra if it has a basis {1 = x1, x2, . . . , xs}
equipped with an involution xi 7→ xi′ , real structure constants Nk

ij with

xixj =
s∑

k=1

Nk
ijxk

for 1 ≤ i, j ≤ s, and positive constants νi for 1 ≤ i ≤ s, such that:

(a) ∀ 1 ≤ i, j, k ≤ s , Nk′

i′j′ = Nk
ij ;

(b) ∀ 1 ≤ i, j, k ≤ s , ∀ σ ∈ {i, j, k}! , Nσ(k)′

σ(i)σ(j) = Nk′
ij ;

(c) A→ R : xi 7→
√
νi is a representation of A.

A fusion algebra A is of nonnegative type if its structure constants Nk
ij

are all nonnegative. The algebra is integral if its structure constants
Nk
ij are natural numbers.

2.2. Association schemes and their duals. Within the literature,
various notions of “association scheme” and related concepts (such as
coherent configurations) have appeared. Here, we follow [3, Ch. 2],
but with notational conventions that are better suited to our algebraic
context.1

2.2.1. Association schemes.

Definition 2.3. Let Q be a finite, nonempty set. A (commutative)
association scheme (Q,Γ) on Q is a disjoint union partition

Q×Q = C1 + . . .+ Cs

or Γ = {C1, . . . , Cs} of Q × Q such that the following axioms are
satisfied:

(A1) C1 = Q̂ = {(x, x) | x ∈ Q} ;
(A2) The converse of each relation in Γ belongs to Γ ;
(A3) ∀Ci ∈ Γ , ∀Cj ∈ Γ , ∀Ck ∈ Γ , ∃ ckij ∈ N .∀ (x, y) ∈ Ck ,∣∣{z ∈ Q | (x, z) ∈ Ci, (z, y) ∈ Cj}

∣∣ = ckij ;

(A4) ∀ 1 ≤ i, j, k ≤ s , ckij = ckji.

Axiom (A4) is the commutativity of the scheme.

1Conversely, it will be apparent from the first paragraph of §5.2.1 that the original
notational conventions of [3, §2.2] may be more natural in combinatorial contexts.
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2.2.2. The Bose-Mesner algebra. Let (Q,Γ) be an association scheme,
with |Q| = n. Consider complex n×n-matrices with rows and columns
indexed by Q. For 1 ≤ i ≤ s, let Ai be the incidence matrix of Ci,
defined by

[Ai]xy =

{
1 if (x, y) ∈ Ci ;
0 otherwise

for x, y ∈ Q. The Bose-Mesner algebra of the association scheme (Q,Γ)
is the s-dimensional complex linear span of the linearly independent set
{In = A1, . . . , An} of matrices [3, §2.3]. With respect to this spanning
set as basis, the Bose-Mesner algebra forms a character algebra, with
ckij as its structure constants. We define the valencies ni as the κi of

Definition 2.1(b). Then for each x in Q, one has ni =
∣∣{y | (x, y) ∈ Ci}

∣∣
for 1 ≤ i ≤ s.

2.2.3. Dual schemes. As a character algebra, the s-dimensional Bose-
Mesner algebra is commutative. It follows that the algebra has a basis
{ 1
n
Jn = E1, . . . , Es} of orthogonal idempotents, where Jn is the n × n

all-ones matrix, the incidence matrix of Q×Q. Viewing {A1, . . . , As} as
an algebraic implementation of the original association scheme (Q,Γ),

it is convenient to describe Γ̃ = {nE1, . . . , nEs} as constituting the

dual scheme (Q, Γ̃), even though the matrices nEi are not incidence

matrices of relations on Q in general, for i > 1. The set Γ̃ is the basis of
a character algebra structure, of nonnegative type, on (the underlying
C-space of) the Bose-Mesner algebra, using the entrywise or Hadamard
product ? of matrices. The structure constants c̃kij defined by

(2.1) (nEi) ? (nEj) =
s∑

k=1

c̃kij(nEk)

are known as the Krein parameters [2, Ex. 2.3(b)], [3, 2,(3.12)]. The
κi of Definition 2.1(b) are the traces fi of the idempotents Ei in this
case, known as multiplicities.

2.3. Quasigroups.

2.3.1. Quasigroups and multiplication groups. A quasigroup, written as
Q, (Q, ·), or (Q, ·, /, \), is a set Q equipped with three binary operations
of multiplication (written as · or mere juxtaposition of arguments),
right division /, and left division \, satisfying the identities:

(IL) y\(y · x) = x ; (IR) x = (x · y)/y ;
(SL) y · (y\x) = x ; (SR) x = (x/y) · y .
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Note the left-right symmetry of these identities. For an element q of a
quasigroup (Q, ·), define the left multiplication L·(q) or

L(q) : Q→ Q;x 7→ q · x

and right multiplication R·(q) or

R(q) : Q→ Q;x 7→ x · q .

By (IL), the left multiplications are injective, while by (SL), they are
surjective. Similarly, the right multiplications are bijective. Then the
multiplication group MltQ or G of a quasigroup Q is the subgroup of
the permutation group Q! on Q that is generated by all the left and
right multiplications. By (SL), it is apparent that G acts transitively
on Q.

Example 2.4. Each group Q is a quasigroup, with x/y = xy−1 and
x\y = x−1y. While the multiplication satisfies the associative law, the
divisions do not. The multiplication group G of a group Q is given by
the exact sequence

{1} // Z(Q)
D // Q×Q T // G // {1}

with D : z 7→ (z, z) as the diagonal embedding of the center Z(Q), and
T : (q, r) 7→ L(q−1)R(r). Note that the inner automorphism group of

Q is the image under T of the diagonal subgroup Q̂ of Q.

2.3.2. Quasigroup conjugacy classes. Let Q be a nonempty quasigroup,
with multiplication group G. The group G acts on Q × Q with the
diagonal action

g : (q1, q2)g 7→ (q1g, q2g)

for q1, q2 in Q and g in G. The orbits of this action are defined as the
(quasigroup) conjugacy classes of Q. Since G acts transitively on Q,

one class is the diagonal Q̂ = C1, the relation {(q1, q2) | q1 = q2} of
equality on Q. There is a finite set

(2.2) Γ = {Q̂ = C1, C2, . . . , Cs}

of conjugacy classes, partitioning Q×Q.

Example 2.5. In the context of Example 2.4, with e as the identity
element of the group Q, define Ci(e) = {y ∈ Q | (e, y) ∈ Ci} for
1 ≤ i ≤ s. Then {Ci(e) | 1 ≤ i ≤ s} is the set of group conjugacy
classes of Q.
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2.3.3. Quasigroup schemes. Let Q be a finite quasigroup. Then with
Γ as in (2.2), (Q,Γ) forms an association scheme [15], [28, Th. 6.3].
Schemes of this type are known as quasigroup conjugacy class schemes,
and as group conjugacy class schemes (or “group association schemes”
[2, Ex. 2.2]) if Q is a group. It is known that certain association schemes
cannot be implemented as quasigroup conjugacy class schemes [16], [28,
§8.2]. An example—the Johnson scheme J(5, 2)—is discussed in §5.2.1.

2.3.4. Character tables. The two bases {A1, . . . , As} and {E1, . . . , Es}
of the Bose-Mesner algebra of the quasigroup conjugacy class scheme
(Q,Γ) of a finite nonempty quasigroup Q stand in the mutually inverse
relationships

Ai =
s∑
j=1

ξijEj and Ei =
s∑
j=1

ηijAj .

Then the character table Ψ of Q is the s× s matrix [ψij] with

(2.3) ψij =

√
fi
nj

ξji =
n√
fi
ηij ,

in terms of the valencies nj of the scheme (Q,Γ) and multiplicities fi
of the dual scheme (Q, Γ̃) [15], [28, Defn. 6.3].

The formula (2.3) was exhibited by Hoheisel for groups Q [11]. In the
group case, the Krein parameters c̃kij in (2.1) give the multiplicities of
the k-th irreducible character χk in the product χi ·χj [2, Exs. 1.1, 3.1].
While these coefficients are usually considered as part of the structure
of the character ring of the group Q, they will receive an interpretation
in terms of quasigroups in §5.4.

3. Augmented magmas

3.1. Compact closed categories.

Definition 3.1. [6, 19] A symmetric monoidal category (V,⊗,1) is
said to be a compact closed category if it has:

(a) a contravariant duality functor ∗ : V→ V;
(b) a natural transformation evA : A⊗ A∗ → 1 of evaluation, and
(c) a natural transformation coevA : 1→ A∗ ⊗ A of coevaluation

such that the composites

(3.1) A
1A⊗coev // A⊗ A∗ ⊗ A ev⊗1A // A

and

(3.2) A∗
coev⊗1A // A∗ ⊗ A⊗ A∗ 1A⊗ev // A∗
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reduce to 1A and 1A∗ respectively for each object A of V.

The order of the tensor product factors appearing in Definition 3.1(b)
is chosen to match our default preference for algebraic notation. For
the following, compare [19, p.193].

Lemma 3.2. There is a natural isomorphism with components

φA,B,C : V(B ⊗ A,C)→ V(B,C ⊗ A∗)

at objects A,B,C of a compact closed category (V,⊗,1).

Example 3.3. Let R be a commutative, unital ring. Let R be the
category of finitely-generated free modules over R. Write RX for the
free module over a finite set X. Then with 1 = R, the free module
over {1}, and with the usual tensor product of R-modules, we have
a symmetric monoidal category (R,⊗, R). This category is compact
closed, with A∗ = R(A,R) for an object A. The evaluation is given by

ev : A⊗ A∗ → R; a⊗ α 7→ aα ,

the usual evaluation of functionals written with algebraic notation. If
X is a finite set, then

coev : R→ RX∗ ⊗RX; 1 7→
∑
x∈X

δx ⊗ x ,

with yδx = δyx for x, y ∈ X, gives the coevaluation.

Example 3.4. If S is a commutative, unital semiring, for example
the semiring (N,+, 0, ·, 1) of natural numbers, then the category S of
finitely-generated free semimodules over the semiring S is a compact
closed category. Since subtraction was not needed in Example 3.3, all
the notation and constructions of that example carry over. Let N, in
particular, denote the category of finitely generated free semimodules
over (N,+, 0, ·, 1), the category of free commutative monoids.

Example 3.5. Consider the category Rel of relations between sets,
with relation product ◦ as the composition of morphisms. There is a
symmetric monoidal category structure (Rel,⊗,>), with the Cartesian
product of sets taken as the tensor product. To match this notation,
write an ordered pair (x, y) as x⊗y, saving the usual Cartesian product
notation for the specification of relations. Take > = {0}.

The symmetric monoidal category (Rel,⊗,>) forms a compact closed
category, with A∗ = A for each set A. The evaluation evA : A⊗A∗ → >
is the relation

{(a⊗ a, 0) | a ∈ A} .
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The coevaluation coevA : > → A⊗ A∗ is the converse relation

{(0, a⊗ a) | a ∈ A} .
Verification of the relation (3.1) reduces to the observation that the
relation product of the relation {(a, a ⊗ b ⊗ b) | a, b ∈ A} with the
relation {(a⊗a⊗b, b) | a, b ∈ A} is the identity relation {(a, a) | a ∈ A}
on A. Verification of (3.2) is similar.

3.2. Augmented magmas. Suppose (V,⊗,1) is a compact closed
category, with τ : A ⊗ B → B ⊗ A; a ⊗ b 7→ b ⊗ a for objects A,B of
V. Note that, although the category V need not be concrete, so that
there may be no “elements” a of A or b of B, languages of Jay’s type
[13] enable one to employ definitions like this in a symbolic sense. Such
conventions are used at various places in the paper.

Definition 3.6. An augmented magma (A, µ,∆, ε) in (V,⊗,1) is an
object A of V, equipped with:

(a) a multiplication (structure) µ : A⊗ A→ A∗;
(b) a comultiplication ∆: A→ A⊗ A, and
(c) an augmentation ε : A→ 1

such that the diagram

(3.3) A⊗ A coevA⊗µ //

ε⊗ε
��

A∗ ⊗ A⊗ A∗
1A∗⊗∆⊗1A∗ // A∗ ⊗ A⊗ A⊗ A∗

τ⊗evA

��
1 A⊗ A∗evA

oo

commutes.

Example 3.7. In any compact closed category V, there is a trivial
counital magma (1, µ,∆, ε).

Example 3.8. Let R be a commutative unital ring. Consider the
compact closed category R defined in Example 3.3. Let G be a finite
group. Consider the group algebra RG with the usual Hopf algebra
structure (RG,∇, η,∆, ε, S) [23, Ex. 1.6]. Define

(3.4) µ : RG⊗RG→ RG∗; g ⊗ h 7→ [δgh : x 7→ δx,gh]

with g, h, x ∈ G. Then (RG, µ,∆, ε) is an augmented magma in R.
Indeed, for g, h ∈ G,

g ⊗ h � //
_

��

∑
x∈G δx ⊗ x⊗ δgh

� //
∑

x∈G δx ⊗ x⊗ x⊗ δgh_

��
1 = δgh,gh

∑
x∈G δx,gh(x⊗ δx)

�oo
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gives the chase round the diagram (3.3).
In the case where R is the ring Z of integers, the counit ε of the

Hopf algebra (ZG,∇, η,∆, ε, S) is the augmentation ε : ZG→ Z of the
ring ZG. This is the reason for the use of the term “augmentation” in
Definition 3.6(c).

3.3. Hypermagmas. In this section, it will be shown how magmas
(A, ·), and their set-valued analogues, appear as augmented magmas
in the compact closed category (Rel,⊗,>) of relations on sets. The
conventions of Example 3.5 are used. Set-valued magmas are defined
as follows.

Definition 3.9. [21, Defn. 6.1(a)] A hypermagma (A, �) is a set A with
a function

A× A→ 2A; (x, y) 7→ x � y
such that the product x � y is nonempty for all x, y ∈ H.

The specific goals are to show how the nonemptiness condition of
Definition 3.9 is captured naturally by the augmented magma condition
(3.3), and how augmented magmas in (Rel,⊗,>) serve equally well to
capture both magmas and hypermagmas, despite the “type difference”
whereby the product is element-valued in the former, and set-valued in
the latter. We begin by setting up structure in (Rel,⊗,>).

Definition 3.10. Let A be a set with a function

A× A→ 2A; (x, y) 7→ x � y .
(a) Define a multiplication structure, or in this case a multiplication

relation µ : A⊗ A→ A∗, as

{(x⊗ y, (z, 0)) | x, y, z ∈ A, z ∈ x � y}
or simply

{(x⊗ y, z) | x, y, z ∈ A, z ∈ x � y} .
(b) Define a comultiplication ∆: A→ A⊗A as the diagonal relation

{(x, x⊗ x) | x ∈ A} .
(c) Define augmentation ε : A→ > as the relation {(x, 0) | x ∈ A}.

This defines the structure (A, µ,∆, ε) in (Rel,⊗,>).

Proposition 3.11. Suppose that A is a set with a function

A× A→ 2A; (x, y) 7→ x � y .
Then (A, �) is a hypermagma if and only if the structure (A, µ,∆, ε) of
Definition 3.10 is an augmented magma in (Rel,⊗,>).
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Proof. Using the simplified version of the multiplication relation, the
successive relations and relation products that constitute the augmented
magma condition (3.3) are:

coevA ⊗ µ = {(x⊗ y, a⊗ a⊗ z) | a, x, y, z ∈ A , z ∈ x � y} ,
1A∗ ⊗∆⊗ 1A∗ = {(a⊗ b⊗ z, a⊗ b⊗ b⊗ z) | a, b, z ∈ A} ,

(coevA ⊗ µ) ◦ (1A∗ ⊗∆⊗ 1A∗)

= {(x⊗ y, a⊗ a⊗ a⊗ z) | a, x, y, z ∈ A , z ∈ x � y} ,

τ ⊗ evA = {(a⊗ b⊗ z ⊗ z, b⊗ a) | a, b, z ∈ A} ,
(coevA ⊗ µ) ◦ (1A∗ ⊗∆⊗ 1A∗) ◦ (τ ⊗ evA)

= {(x⊗ y, z ⊗ z) | x, y, z ∈ A , z ∈ x � y} ,

evA = {(z ⊗ z, 0) | z ∈ A} ,
(coevA ⊗ µ) ◦ (1A∗ ⊗∆⊗ 1A∗) ◦ (τ ⊗ evA) ◦ (evA)

= {(x⊗ y, 0) | x, y ∈ A , ∃ z ∈ x � y} ,(3.5)

and

ε⊗ ε = {(x⊗ y, 0) | x, y ∈ A} .(3.6)

Thus the agreement between (3.5) and (3.6), i.e., the commuting of
(3.3) that makes (A, µ,∆, ε) into an augmented magma, is equivalent
to the hypermagma condition that each x � y be nonempty. �

Example 3.12. A magma (A, ·) may first be taken as a hypermagma
(x, y) 7→ {x · y}, and then interpreted as an augmented magma in
(Rel,⊗,>) according to the construction of Definition 3.10. Thus the
multiplication relation is

{(x⊗ y, x · y) | x, y ∈ A} ,

which is just the function A×A→ A; (x, y) 7→ x · y. It transpires that
the augmented magma structure (A, µ,∆, ε) all lies in the symmetric
monoidal category (Set,×,>), although the condition (3.3) moves into
the compact closed structure of (Rel,⊗,>).

3.4. Multisets. Write N+ for the set of positive integers. A function
w : X → N+ is taken to represent a multiset, with X as its set of
elements (compare [30, §I.1.5]). The image w(x) of an element x of
X is its weight. The multiset w : X → N+ is finite if its domain X is
finite. In that case, the number |X| is known as the tare weight of the
multiset, while

∑
x∈X w(x) is known as its gross weight.
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Example 3.13. Let (Q,Γ) be an association scheme.

(a) Assigning a weight w(Ci) = |Ci|
/
|Q| to each class Ci yields

a multiset w : Γ → N+. In this case, w(Ci) = ni, the usual
valency of the relation Ci.

(b) Assigning a weight w′(Ci) = |Ci| to each class Ci again yields a
multiset w : Γ→ N+.

(c) Assigning a weight w(Ei) = fi = Tr(Ei) to each idempotent Ei
yields a multiset w : Γ̃→ N+.

Consider the compact closed category (N,⊗,N) that was introduced
in Example 3.4, the category of finitely generated free commutative
monoids or free semimodules over the semiring N. The weight function
w : X → N+ of a multiset X, taken with enlarged codomain N, extends
freely to an N-morphism

(3.7) ε : NX → N;x 7→ w(x) ,

an element of NX∗. The goal is to find an abstract characterization of
the structures (NX, ε) in N that are obtained in this fashion, with ε as
in (3.7), from a finite multiset w : X → N+.

The following definition works in the context of Example 3.4.

Definition 3.14. Let S be a commutative unital semiring. Consider
an arbitrary object A = SX of S, the free S-semimodule over a finite
set X.

(a) The S-morphism

∆: A→ A⊗ A;x 7→ x⊗ x
is known as the diagonal comultiplication.

(b) An S-morphism ε : A→ S is described as an augmentation.
(c) The structure (A,∆, ε) is called an augmented comagma in S.
(d) If w : X → N+ is a multiset, then the augmented comagma

(NX,∆, ε), with ε as in (3.7), is the multiset augmented co-
magma of w : X → N+ in N .

(e) An element a of A is said to be grouplike if a∆ = a ⊗ a and
aε 6= 0.

(f) In an augmented comagma (A,∆, ε), write A0 for the set of
grouplike elements.

(g) An augmented comagma (A,∆, ε) in N is described as being
multisetlike if A = NA0.

Example 3.15. Let (A,∆, ε) be an augmented comagma in N for
which the semimodule A is nontrivial, but the augmentation is the zero
morphism ε : A→ N. Then A0 is empty, so (A,∆, ε) is not multisetlike.
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Lemma 3.16. Suppose that S is a commutative unital semiring, and
that a =

∑
x∈I exx is a grouplike element of an augmented comagma

structure (SX,∆, ε) over a set X. Then {ex | x ∈ I} is a set of
mutually orthogonal idempotents in S.

Proof. The condition a∆ = a⊗ a translates to a∆ =

(3.8)
∑
x∈I

ex(x⊗ x) =
∑
x∈I

exx⊗
∑
y∈I

eyy =
∑
x∈I

∑
y∈I

exey(x⊗ y) .

Equating coefficients of x ⊗ y in (3.8) for x 6= y yields exey = 0.
Equating coefficients of x⊗ y in (3.8) for y = x yields ex = exex. �

Proposition 3.17. Let (A,∆, ε) be an augmented comagma in N.
Then the following two conditions are equivalent:

(a) The augmented comagma (A,∆, ε) is multisetlike.
(b) The augmentation ε restricts to a multiset ε : A0 → N+ whose

multiset augmented comagma in N is (A,∆, ε).

Proof. The implication (b) ⇒ (a) is immediate by definition. For the
converse, suppose that (A,∆, ε) is a multisetlike augmented comagma,
with A = NX for a finite generating set X. Let a =

∑
x∈X exx be

a grouplike element of A. Then by Lemma 3.16, {ex | x ∈ X} is a
set of orthogonal idempotents. Since ε(a) =

∑
x∈X exε(x) is nonzero,

there is an element x of X for which ex is a nonzero idempotent of N,
namely 1. For x 6= y ∈ X, the orthogonality exey = 0 implies that
ey = 0, so that a = x. Thus A0 ⊆ X. Since A = NA0, it follows that
A0 = X. The augmentation restricts appropriately, by the second part
of Definition 3.14(e). �

Definition 3.18. Let (A,∆, ε) be a multisetlike augmented comagma
in N. If ε =

∑
a∈A0

δa , then (A,∆, ε) is setlike.

Note that in a setlike multiset, the weight of each element is 1. Thus
the results of this section enable us to conflate multisetlike objects with
finite multisets, and setlike objects with finite sets.

3.5. Lifting and covering. Working in the category N , suppose an
object (NQ,∆, εQ) is setlike and an object (NX,∆, εX) is multisetlike.

Definition 3.19. The multisetlike object (NX,∆, εX) lifts to the set-
like object (NQ,∆, εQ), or the latter covers the former, if there is a
surjective covering function f : Q→ X for which the relation

(3.9) εX =
∑
x∈X

(∑
q∈Q

qfδx

)
δx

holds.



AUGMENTED QUASIGROUPS 15

For an element x of X, the weight εX(x) assigned by the formula
(3.9) to an element x of X is the cardinality |f−1{x}| of the preimage
f−1{x} of x in Q. Indeed, the function fδx is the characteristic function
of the preimage as a subset of Q. In a reinforced interpretation of the
First Isomorphism Theorem for sets [30, Th. O.3.3.1], the multiset X
is identified as a quotient of the set Q by an equivalence relation on Q.

3.6. Weighted magmas. The following definition relates to notation
from [9, §1], which will reappear more fully in §4.3.

Definition 3.20. Let w : X → N+ be a finite multiset. Then a
weighted magma structure (X,w, α) on X is given by a multiplication
function

(3.10) α : X ×X ×X → N; (a, b, x) 7→ αx(a, b)

such that the condition

(3.11) ∀ a, b ∈ X ,
∑
x∈X

αx(a, b) = w(a)w(b)

is satisfied. The multiset terminology of §3.4 (gross weight, etc.) carries
over to weighted magmas.

Proposition 3.21. Let (A, ·) be a finite magma, with multiplication
also written simply as juxtaposition. Construe the set A as the multiset
εA : A → {1}. Then the magma structure (A, ·) is equivalent to the
weighted magma structure (A, εA, δ), where

δ : A× A× A→ N; (a, b, x) 7→ δx,ab

is the multiplication function.

Proof. Note that for elements x, a, b of A, the equation a · b = x holds
in (A, ·) if and only if the equation δx(a, b) = 1 holds in (A,w, δ). �

3.6.1. Rescaling. The content of this paragraph is inspired by [9, p.163],
where the same idea appears in a slightly different context.

Definition 3.22. Let (X,w, α) be a weighted magma structure on a
set X. Let k be a positive integer. Then

w′ : X → N+;x 7→ kw(x)

and
α′ : X ×X ×X → N; (a, b, x) 7→ k2αx(a, d)

constitute a rescaling of (X,w, α).

Proposition 3.23. Let (X,w, α) be a weighted magma structure on a
set X. Let k be a positive integer. Then the rescaled version (X,w′, α′)
of (X,w, α) is a weighted magma.
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Proof. Multiplying the weighted magma condition (3.11) for (X,w, α)
yields ∑

x∈X

α′x(a, b) =
∑
x∈X

k2αx(a, b) = kw(a)kw(b) = w′(a)w′(b) ,

which is the weighted magma condition for (X,w′, α′). �

3.6.2. Weighted magmas and augmented magmas. The multiplication
function (3.10) of a weighted magma extends freely to an N-morphism

α : NX ⊗ NX ⊗ NX → N; a⊗ b⊗ x 7→ αx(a, b) ,

which in turn corresponds to the N-morphism

αφNX,NX⊗NX,N : NX ⊗ NX → NX∗; a⊗ b 7→ [x 7→ αx(a, b)]

according to Lemma 3.2.

Proposition 3.24. A weighted magma (X,w, α) is equivalent to an
augmented magma (NX,αφNX,NX⊗NX,N,∆, ε) in the category (N,⊗,N),
where (NX,∆, ε) is a multisetlike augmented comagma.

Proof. Suppose that (X,w, α) is a weighted magma. Then for a, b ∈ X,

a⊗ b � //
_

��

∑
x∈X δx ⊗ x⊗ [x 7→ αx(a, b)]

_

��∑
x∈X δx ⊗ x⊗ x⊗ [x 7→ αx(a, b)]

_

��
w(a)w(b) =

∑
x∈X αx(a, b)

∑
x∈X αx(a, b)(x⊗ δx)

�oo

gives the chase round the diagram (3.3) that verifies the augmented co-
magma condition. Conversely, suppose that (NX,αφNX,NX⊗NX,N,∆, ε)
is an augmented magma, where (NX,∆, ε) is a multisetlike augmented
comagma. The augmentation of the latter structure restricts to yield
a multiset w : X → N+. Then the equality in the bottom left of the
commuting chase establishes that (X,w, α) is a weighted magma. �

3.6.3. Covering magmas. The following provides a first reformulation
of the amalgamation concept from [9, pp.142–3]. The concept will be
revisited in §5.1.

Proposition 3.25. Let (A, ·) be a magma, yielding the weighted magma
structure (A, εA, δ) of Proposition 3.21. Let f : (A,∆, εA)→ (X,∆, w)
be a covering. Then

α : X×X×X → N; (x, y, z) 7→
∣∣{(a, b) ∈ f−1{x}×f−1{y} | (ab)f = z}

∣∣
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is the multiplication function of a weighted magma (X,w, α).

Proof. The weighted magma condition (3.11) amounts to∑
z∈X

αz(x, y) = w(x)w(y) = |f−1{x} × f−1{y}| .

It holds since the left hand side counts the number of elements of
f−1{x}× f−1{y} whose magma product in (A, ·) lies in some arbitrary
preimage f−1{z} of an element z of X. �

Definition 3.26. In the context of Proposition 3.25, the weighted
magma is said to lift to, or be covered by, or be an amalgamation
of, the magma (A, ·).

3.7. Association schemes as augmented magmas.

Theorem 3.27. Let (Q,Γ) be an association scheme. Then a weighted
magma structure (Γ, w, α) is given by

(3.12) α : Γ× Γ× Γ→ N; (Ci, Cj, Ck) 7→ ckijnk

on the multiset w : Γ→ N+;Ci 7→ ni = |Ci|
/
|Q| of Example 3.13(a).

Proof. For 1 ≤ i ≤ s, let Ai be the incidence matrix of the subset Ci
of Q×Q. For Ci, Cj in Γ, the equation

(3.13) AiAj =
s∑

k=1

ckijAk

holds by virtue of Definition 2.3(A3). An application of the Bose-
Mesner algebra representation A 7→ AE1 to (3.13) then yields

ninj =
s∑

k=1

ckijnk or w(Ci)w(Cj) =
s∑

k=1

αCk
(Ci, Cj) ,

verifying the weighted magma condition (3.11). �

Corollary 3.28. Let (Q,Γ) be an association scheme of order |Q|.
Then a weighted magma structure (Γ, w′, α′) is given by

(3.14) α′ : Γ× Γ× Γ→ N; (Ci, Cj, Ck) 7→ |Q| · |Ck|ckij
on the multiset w′ : Γ→ N+;Ci 7→ |Ci| of Example 3.13(b).

Proof. The weighted magma structure here is obtained, according to
Proposition 3.23, as the weighted magma structure of Theorem 3.27
rescaled by a factor of |Q|. �

Application of Proposition 3.24 to the weighted magmas constructed
in Theorem 3.27 and Corollary 3.28 yields the following.
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Corollary 3.29. Two augmented magma structures (NΓ, µ,∆, ε) in
the compact closed category (N,⊗,N) are furnished by each association
scheme (Q,Γ).

(a) The first has multiplication structure

µ : NΓ⊗ NΓ→ NΓ∗;Ci ⊗ Cj 7→
[
Ck 7→ ckijnk

]
and an augmentation

(3.15) ε : NΓ→ N;Ci 7→ ni

known as the valency augmentation.
(b) The second has multiplication structure

µ : NΓ⊗ NΓ→ NΓ∗;Ci ⊗ Cj 7→
[
Ck 7→ |Q| · |Ck|ckij

]
and an augmentation

(3.16) ε : NΓ→ N;Ci 7→ |Ci|
known as the relational augmentation.

3.8. Character and fusion algebras as augmented magmas. We
work in the compact closed category (C,⊗,C).

Theorem 3.30. (a) Let A be a character algebra, with basis {x1, . . . , xs}.
Then an augmented magma structure (A, µ,∆, ε) in (C,⊗,C) is given
by the coproduct

∆: A→ A⊗ A;xi 7→ xi ⊗ xi ,
the multiplication structure

µ : A⊗ A→ A∗;xi ⊗ xj 7→
[
xk 7→ pkijκk

]
,

and an augmentation

(3.17) ε : A→ C;xi 7→ κi

known as the representation augmentation.
(b) Suppose that A is a fusion algebra, with basis {x1, . . . , xs}. Then

an augmented magma structure (A, µ,∆, ε) in (C,⊗,C) is given by the
coproduct

∆: A→ A⊗ A;xi 7→ xi ⊗ xi ,
the multiplication structure

µ : A⊗ A→ A∗;xi ⊗ xj 7→
[
xk 7→ Nk

ij

√
νk
]
,

and an augmentation

(3.18) ε : A→ C;xi 7→
√
νi

known as the representation augmentation.
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Proof. (a) The augmented magma condition (3.3) is verified by the
chase

xi ⊗ xj � coevA⊗µ //
_

ε⊗ε

��

∑s
h=1 δxh ⊗ xh ⊗

[
xk 7→ pkijκk

]
_

1A∗⊗∆⊗1A∗
��∑s

h=1 δxh ⊗ xh ⊗ xh ⊗ [xk 7→ pkijκk
]

_

τ⊗evA

��
κiκj =

∑s
h=1 p

h
ijκh

∑s
h=1 p

h
ijκh(xh ⊗ δxh)�

evA

oo

in which the commuting, namely the equality in the lower left hand
corner, follows when the equation

xixj =
s∑

h=1

phijxh

is mapped according to the representation augmentation (3.17), as in
Definition 2.1(c).

The proof of (b) is similar, replacing the structure constants pkij with

their analogues Nk
ij, and the κi with

√
νi. In place of Definition 2.1(c),

Definition 2.2(c) is used. �

4. Augmented quasigroups

4.1. Prequasigroups and augmented quasigroups. Suppose that
(V,⊗,1) is a compact closed category. Define

τ13 : A3 ⊗ A2 ⊗ A1 → A1 ⊗ A2 ⊗ A3; a3 ⊗ a2 ⊗ a1 7→ a1 ⊗ a2 ⊗ a3

and

τ23 : A1 ⊗ A3 ⊗ A2 → A1 ⊗ A2 ⊗ A3; a1 ⊗ a3 ⊗ a2 7→ a1 ⊗ a2 ⊗ a3

(recalling the remarks at the beginning of §3.2), along with

τ ∗13 : V(A1 ⊗ A2 ⊗ A3,1)→ V(A3 ⊗ A2 ⊗ A1,1); θ 7→ τ13θ

and

τ ∗23 : V(A1 ⊗ A2 ⊗ A3,1)→ V(A1 ⊗ A3 ⊗ A2,1); θ 7→ τ23θ

for objects A1, A2, A3 of V. In conjunction with the above, we will also
use the notation of Lemma 3.2.

Definition 4.1. Let (A, µ,∆, ε) be an augmented magma in (V,⊗,1).
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(a) The V-morphism ρ : A⊗ A→ A∗ given by

ρ = µφ−1
A,A⊗A,1τ

∗
13φA,A⊗A,1

is called the right division (structure) on the augmented magma
(A, µ,∆, ε).

(b) The V-morphism λ : A⊗ A→ A∗ given by

λ = µφ−1
A,A⊗A,1τ

∗
23φA,A⊗A,1

is called the left division (structure) on the augmented magma
(A, µ,∆, ε).

(c) The structure (A, µ, ρ, λ,∆, ε) is called the (augmented) pre-
quasigroup on the augmented magma (A, µ,∆, ε).

(d) The structures (A, µ,∆, ε) or (A, µ, ρ,∆, ε) are described as
(augmented) right quasigroups if (A, ρ,∆, ε) is an augmented
magma.

(e) The structures (A, µ,∆, ε) or (A, µ, λ,∆, ε) are described as
(augmented) left quasigroups if (A, λ,∆, ε) is an augmented
magma.

(f) The structures (A, µ,∆, ε) or (A, µ, ρ, λ,∆, ε) are described as
(augmented) quasigroups if both (A, ρ,∆, ε) and (A, λ,∆, ε) are
augmented magmas.

Example 4.2. Consider the augmented magma (RG, µ,∆, ε) built in
Example 3.8 from the group algebra RG of a finite group G over a
commutative unital ring R, with

µ : x⊗ y 7→ δxy

as its multiplication structure (3.4) written in an abbreviated form.
Since µφ−1

RG,RG⊗RG,R : x⊗ y ⊗ z 7→ δz,xy and

µφ−1
RG,RG⊗RG,R τ

∗
13 : z ⊗ y ⊗ x 7→ δz,xy = δx,zy−1 ,

one obtains the right division structure

µφ−1
RG,RG⊗RG,R τ

∗
13 φRG,RG⊗RG,R = ρ : z ⊗ y 7→ δzy−1 .

Similarly, the left division structure is obtained as λ : x ⊗ z 7→ δx−1z.
Now in Example 3.8, it turned out that verification of the augmented
magma condition (3.3) for the multiplication structure (3.4) did not
involve the associativity of the group multiplication, so a comparable
verification works for the right and left division structures. In other
words, the augmented magma (RG, µ,∆, ε) is actually an augmented
quasigroup in (R,⊗, R).
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4.2. Marty quasigroups. The term “hypergroup” has been used in a
number of different contexts over the years, with a number of different
interpretations that have generally involved a concept of inversion, for
example in the “postulate of the inverse” in [33, p.78]. Here, we return
closer to the spirit of the original definition of Marty [24, p.89], but
without any associativity requirement for (A, �).

Definition 4.3. Let (A, �,i,h) be a set A with three hypermagma
structures (A, �), (A,i), and (A,h). Then (A, �,i,h) is a Marty
quasigroup if and only if the conditions

z ∈ x � y ⇔ x ∈ z i y ⇔ y ∈ xh z

hold for elements x, y, z of A.

Example 4.4. A residuated magma is defined as a partially ordered
algebra (A,≤, ·, /, \) such that (A,≤) is a poset, and the three binary
operations ·, /, \ satisfy the residuation property

(4.1) x · y ≤ z ⇔ x ≤ z/y ⇔ y ≤ x\z

[14, 26]. Define the up-set ↑a = {x ∈ A | a ≤ x} and the down-set
↓a = {x ∈ A | x ≤ a} for an element a of the poset (A,≤). Then the
specifications

x � y = ↑(x · y) , z i y = ↓(z/y) , xh z = ↓(x\z)

yield a Marty quasigroup (A, �,i,h).

Example 4.5. As a special case of Example 4.4, consider a Heyting
algebra (A,∧,→), a meet semilattice (A,∧) with

(4.2) x ∧ y ≤ z ⇔ x ≤ y → z ⇔ y ≤ x→ z

as a residuation [17, §I.1.10]. By comparison of (4.2) with (4.1), the
specifications

(4.3) x � y = ↑(x ∧ y) , z i y = ↓(y → z) , xh z = ↓(x→ z)

yield a Marty quasigroup (A, �,i,h).

The following theorem demonstrates that Marty quasigroups are
equivalent to augmented quasigroups in (Rel,⊗,>).

Theorem 4.6. Suppose that (A, �) is a hypermagma in the sense of
Definition 3.9. Let (A, µ,∆, ε) be the corresponding augmented magma
in (Rel,⊗,>) provided by Proposition 3.11. Then let (A, µ, ρ, λ,∆, ε)
be the corresponding augmented prequasigroup constructed according to
Definition 4.1(c).
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(a) If (A, �,i,h) is a Marty quasigroup, the respective augmented
magmas provided by Proposition 3.11 from (A,i) and (A,h)
are (A, ρ,∆, ε) and (A, λ,∆, ε), so that (A, µ, ρ, λ,∆, ε) is an
augmented quasigroup in (Rel,⊗,>).

(b) If (A, µ, ρ, λ,∆, ε) is an augmented quasigroup in the sense of
Definition 4.1(f), then (A, �) extends to a Marty quasigroup
(A, �,i,h), where the respective augmented magmas provided
by Proposition 3.11 from (A,i) and (A,h) are (A, ρ,∆, ε) and
(A, λ,∆, ε).

Proof. For an object A of the compact closed category (Rel,⊗,>), the
natural isomorphism component φA,A⊗A,> of Lemma 3.2 acts as

α = {x⊗ y ⊗ z | x⊗ y ⊗ z ∈ α} 7→ {(x⊗ y, z) | x⊗ y ⊗ z ∈ α} ,
{x⊗ y ⊗ z | (x⊗ y, z) ∈ β} 7→ {(x⊗ y, z) | (x⊗ y, z) ∈ β} = β

in the simplified notation that identifies a relation ξ ∈ X∗, for a set X,
with the subset (unary relation) {x ∈ X | (x, 0) ∈ ξ} of X.

Under the main hypothesis of the proposition, the multiplication
relation of (A, µ,∆, ε) is

µ = {(x⊗ y, z) | x, y, z ∈ A, z ∈ x � y}
in the simplified notation. Thus

µφ−1
A,A⊗A,> = {x⊗ y ⊗ z | x, y, z ∈ A, z ∈ x � y} ,

µ φ−1
A,A⊗A,> τ

∗
13 = {z ⊗ y ⊗ x | x, y, z ∈ A, z ∈ x � y} , and

(4.4) µφ−1
A,A⊗A,> τ

∗
13 φA,A⊗A,> = {(z ⊗ y, x) | x, y, z ∈ A, z ∈ x � y}

in the simplified notation.

(a) If (A, �,i,h) is a Marty quasigroup, then (4.4) reduces to

ρ = {(z ⊗ y, x) | z, y, x ∈ A, x ∈ z i y} ,
so that (A, ρ,∆, ε) is the augmented magma corresponding to (A,i)
via Proposition 3.11. The corresponding left-sided statement follows
similarly.

(b) If (A, ρ,∆, ε) is an augmented magma, with

ρ = {(z ⊗ y, x) | x, y, z ∈ A, z ∈ x � y} ,
define

z i y = {x ∈ A | (z ⊗ y, x) ∈ ρ}
for z, y in A. Then z ∈ x � y if and only if x ∈ z i y. A similar
consideration on the left-hand side yields a set-valued operation h such
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that (A, �,i,h) is a Marty quasigroup, and by our construction the
two respective augmented magmas provided by Proposition 3.11 from
(A,i) and (A,h) are (A, ρ,∆, ε) and (A, λ,∆, ε). �

Corollary 4.7. With the considerations of Example 3.12, quasigroups
(A, ·, /, \) are equivalent to augmented quasigroups (A, ·, /, \,∆, ε), for
which all the structure actually lies in (Set,×,>).

4.3. Weighted quasigroups. Weighted quasigroups were originally
defined in [9, §1]. Since the conventions used for that definition do
not completely match the usual general quasigroup conventions, the
definition as given here is slightly different: our βx(a, b) corresponds to
the δx(b, a) in [9].2

Definition 4.8. Let (X,w, α) be a weighted magma, equipped with
multiplication function (3.10).

(a) Define the right division function

(4.5) β : X ×X ×X → N; (c, d, y) 7→ αc(y, d) ,

and write (a, b, x)β = βx(a, b) = αa(x, b) for a, b, x in X.
(b) Define the left division function

(4.6) γ : X ×X ×X → N; (c, d, y) 7→ αd(c, y) ,

and write (a, b, x)γ = γx(a, b) = αb(a, x) for a, b, x in X.
(c) The structure (X,w, α, β, γ) is called a weighted prequasigroup.

The left and right division functions of a weighted prequasigroup
(X,w, α, β, γ) are already specified by the multiplication function. Thus
it may suffice to refer to (X,w, α) alone as the prequasigroup structure.

Definition 4.9. A weighted prequasigroup (X,w, α, β, γ) is a weighted
quasigroup if (X,w, β) and (X,w, γ) are weighted magmas.

In computational terms, the conditions from Definition 4.8 may be
summarized as follows.

Proposition 4.10. A weighted magma (X,w, α) extends to a weighted
quasigroup (X,w, α, β, γ) if and only if the conditions

(4.7)
∑
x∈X

αx(a, b) =
∑
x∈X

αa(x, b) =
∑
x∈X

αb(a, x)

are satisfied for all a, b in X.

2The latter notation was more appropriate in the commutative case that was
important to the authors of [9]. It enabled them to avoid the kind of reversal of
argument order that is seen in the middle equation of (4.3) connected with the
commutative meet operation of a Heyting algebra.
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Proof. Since (X,w, α) is a weighted magma, the first sum in (4.7) is
w(a)w(b). Equality with the second sum in (4.7) then corresponds to
(X,w, β) being a weighted magma, while equality with the third sum
corresponds to (X,w, γ) being a weighted magma. �

Corollary 4.11. If a weighted magma (X,w, α) extends to a weighted
quasigroup, then so does each rescaled version (X,w′, α′).

Proof. In the notation of Proposition 3.23, the verification for (X,w′, α′)
is obtained on multiplying (4.7) throughout by a factor of k2. �

Proposition 4.12. Suppose that (A, ·, /, \) is a finite quasigroup. Take
the set A as the setlike multiset εA : X → {1}. Then the quasigroup
structure is equivalent to a weighted quasigroup structure (X, εA, δ, δ

′,′δ),
where

δ : X ×X ×X → N; (a, b, x) 7→ δx,a·b

is the multiplication function,

δ′ : X ×X ×X → N; (a, b, x) 7→ δx,a/b

is the right division function, and

′δ : X ×X ×X → N; (a, b, x) 7→ δx,a\b

is the left division function.

Proof. As in the proof of Proposition 3.21, note that for elements x, a, b
of A, the equation a · b = x holds in (A, ·) if and only if the equation
δx(a, b) = 1 holds in (A, εA, δ).

In the quasigroup (A, ·, /, \), the equation x = a/b holds if and only
if x · b = a. The latter condition translates to δa(x, b) = 1 in the
weighted magma (A, εA, α), and thus to δ′x(a, b) = 1 in the weighted
prequasigroup (A, εA, δ, δ

′,′δ). Hence (A, εA, δ
′) is a weighted magma.

Similarly, in the quasigroup (A, ·, /, \), the equation x = a\b holds
if and only if a · x = b. In the weighted magma (A, εA, δ), the latter
condition translates to δb(a, x) = 1, and thus to ′δx(a, b) = 1 in the
weighted prequasigroup (A, εA, δ, δ

′,′δ). Hence (A, εA,
′δ) is a weighted

magma. �

We conclude this section with the analogue of Proposition 3.24 for
weighted quasigroups.

Proposition 4.13. Let (X,w, α, β, γ) be a weighted quasigroup. Then
there is an equivalent augmented quasigroup (NX,µ, ρ, λ,∆, ε) in the
category (N,⊗,N), where (NX,∆, ε) is a multisetlike augmented co-
magma.
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Proof. Consider the augmented magma (NX,µ,∆, ε) equivalent to the
weighted magma (X,w, α) that is furnished by Proposition 3.24. Since
its multiplication is µ = αφNX,NX⊗NX,N, or more simply µ = αφ without
the suffices, we have µφ−1 = α : x⊗ b⊗ a 7→ αa(x, b) , whence

ρ = µφ−1τ13φ : a⊗ b⊗ x 7→ αx(a, b) = βx(a, b)

by Definition 4.1(a) and (4.5). By Proposition 3.24, (NX, ρ,∆, ε) is an
augmented magma, equivalent to the weighted magma (X,w, β). In
similar fashion, (NX,λ,∆, ε) is the augmented magma equivalent to the
weighted magma (X,w, γ), and so (NX,µ, ρ, λ,∆, ε) is an augmented
quasigroup. �

Example 4.14. Suppose that (A, ·, /, \) is a finite quasigroup. Then
Propositions 4.12 and 4.13 yield a corresponding augmented quasigroup
(NA, µ, ρ, λ,∆, ε) in the category (N,⊗,N), with

µ : a⊗ b 7→ [x 7→ δx,a·b]

as the multiplication structure. On the other hand, Corollary 4.7 yields
an augmented quasigroup structure (A, ·, /, \,∆, ε) in the subcategory
(Set,×,>) of (Rel,⊗,>), with

µ : a⊗ b 7→ a · b
as the multiplication structure.

4.4. The weighted quasigroups of an association scheme. Given
an association scheme (Q,Γ), Theorem 3.27 built a weighted magma
structure (Γ, w, α), with multiplication function

(4.8) α : Γ× Γ× Γ→ N; (Ci, Cj, Ck) 7→ ckijnk

and the valency augmentation. In turn, Corollary 3.28 built a weighted
magma structure (Γ, w′, α′), with multiplication function

(4.9) α′ : Γ× Γ× Γ→ N; (Ci, Cj, Ck) 7→ |Q| · |Ck|ckij
and the relational augmentation.

Theorem 4.16, the main result of this section, shows that (Γ, w, α)
and (Γ, w′, α′) are actually weighted quasigroups. The theorem is based
on the following combinatorial observation.

Lemma 4.15. [3, Prop. 2.2.2(v)] Let (Q,Γ) be an association scheme.
Then

(4.10)
s∑

k=1

cjki =
s∑

k=1

cjik = ni

for 1 ≤ i, j ≤ s.
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Theorem 4.16. If (Q,Γ) is an association scheme, then the weighted
magmas (Γ, w, α) of Theorem 3.27 and (Γ, w′, α′) of Corollary 3.28 are
weighted quasigroups.

Proof. Corresponding to the multiplication function (4.8), the weighted
magma (Γ, w, α) has the right division function

β : Γ× Γ× Γ→ N; (Ci, Cj, Ck) 7→ cikjni

and the left division function

γ : Γ× Γ× Γ→ N; (Ci, Cj, Ck) 7→ cjiknj .

Given the commutativity ckij = ckji for all 1 ≤ i, j, k ≤ s, verification
of the weighted magma condition for the right and left divisions of
(Γ, w, α) reduces to the verification of

s∑
k=1

cjiknj = ninj

for all 1 ≤ i, j ≤ s, which follows by Lemma 4.15. Then the statement
for (Γ, w′, α′) is a direct application of Corollary 4.11. �

Corollary 3.29(a) thus yields the following.

Corollary 4.17. An association scheme (Q,Γ) furnishes an augmented
quasigroup structure (NΓ, µ, ρ, λ,∆, ε) in the compact closed category
(N,⊗,N), with the valency augmentation ε : NΓ → N;Ci 7→ ni. The
multiplication structure is

µ : NΓ⊗ NΓ→ NΓ∗;Ci ⊗ Cj 7→
[
Ck 7→ ckijnk

]
.

Then the right division structure is

ρ : NΓ⊗ NΓ→ NΓ∗;Ci ⊗ Cj 7→
[
Ck 7→ cikjni

]
,

while

λ : NΓ⊗ NΓ→ NΓ∗;Ci ⊗ Cj 7→
[
Ck 7→ cjiknj

]
is the left division structure.

4.5. The augmented quasigroup of a character algebra. This
paragraph provides a generalization of Corollary 4.17. Let A be a
character algebra, with the notation of Definition 2.1. We begin with
an algebraic analogue of the combinatorial Lemma 4.15.

Lemma 4.18. [3, Prop. 2.5.1] The relation pijhκi = phj′iκh holds for
1 ≤ h, i, j ≤ s.
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Theorem 4.19. A character algebra A furnishes an augmented quasi-
group (A, µ, ρ, λ,∆, ε) in the compact closed category (C,⊗,C), with
representation augmentation

ε : A→ C;xi 7→ κi .

As in Theorem 3.30(a), the multiplication structure is

µ : A⊗ A→ A∗;xi ⊗ xj 7→
[
xk 7→ pkijκk

]
.

The right division structure is

ρ : A⊗ A→ A∗;xi ⊗ xj 7→
[
xk 7→ pikjκi

]
,

while

λ : A⊗ A→ A∗;xi ⊗ xj 7→
[
xk 7→ pjikκj

]
is the left division structure.

Proof. By Theorem 3.30(a), (CA, µ,∆, ε) forms an augmented magma.
Then the augmented magma condition (3.3) for the left division is
verified by the chase

xi ⊗ xj � coevA⊗ρ //
_

ε⊗ε

��

∑s
h=1 δxh ⊗ xh ⊗

[
xk 7→ pikjκi

]
_

1A∗⊗∆⊗1A∗
��∑s

h=1 δxh ⊗ xh ⊗ xh ⊗ [xk 7→ pikjκi
]

_

τ⊗evA

��
κiκj =

∑s
h=1 p

i
hjκi

∑s
h=1 p

i
hjκi(xh ⊗ δxh)�

evA

oo

in which the commuting, namely the equality in the lower left hand
corner, follows from the computations

κiκj = κj′κi =
s∑

h=1

phj′iκh =
s∑

h=1

pijhκi =
s∑

h=1

pihjκi

using [3, §2.5(d)] and Lemma 4.18. There is a comparable verification
for the right division. �

4.5.1. The augmented quasigroup of a dual scheme. We consider the
dual to Corollary 4.17 as a first application of Theorem 4.19. Let R+

denote the subsemiring [0,∞[ of R.

Corollary 4.20. An association scheme (Q,Γ), with (non-negative)
Krein parameters {c̃ki,j | 1 ≤ i, j, k ≤ s}, furnishes an augmented quasi-

group (R+Γ̃, µ, ρ, λ,∆, ε) in the compact closed category (R+,⊗,R+),
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with representation augmentation

ε : R+Γ̃→ R+;nEi 7→ fi .

The multiplication structure is

µ : R+Γ̃⊗ R+Γ̃→ R+Γ̃∗;nEi ⊗ nEj 7→
[
nEk 7→ c̃kijfk

]
as suitably restricted from Theorem 3.30(a). Then the right division
structure is

ρ : R+Γ̃⊗ R+Γ̃→ R+Γ̃∗;nEi ⊗ nEj 7→
[
nEk 7→ c̃ikjfi

]
,

while

λ : R+Γ̃⊗ R+Γ̃→ R+Γ̃∗;nEi ⊗ nEj 7→
[
nEk 7→ c̃jikfj

]
is the left division structure.

4.5.2. The augmented quasigroup of a fusion algebra. We now present
a second application of Theorem 4.19.

Corollary 4.21. Let A be a fusion algebra with basis X = {x1, . . . , xs},
structure constants Nk

ij, and representation xi 7→
√
νi.

(a) In general, take K = C.
(b) If A is of nonnegative type, take K = R+ (notation of §4.5.1).
(c) If A is of integral type, take K = N.

Then A furnishes an augmented quasigroup (KX,µ, ρ, λ,∆, ε) in the
compact closed category (K,⊗,K), with representation augmentation

ε : KX → K;xi 7→ νi .

The multiplication structure is

µ : KX ⊗KX → KX∗;xi ⊗ xj 7→
[
xk 7→

√
νiνjνkN

k
ij

]
.

The right division structure is

ρ : KX ⊗KX → KX∗;xi ⊗ xj 7→
[
xk 7→

√
νiνjνkN

i
kj

]
,

while

λ : KX ⊗KX → KX∗;xi ⊗ xj 7→
[
xk 7→

√
νiνjνkN

j
ik

]
is the left division structure.

Proof. By [2, Th. 3.1], the fusion algebra yields a character algebra
with structure constants

pkij =

√
νiνj
νk

Nk
ij

for 1 ≤ i, j, k ≤ s, and κi = νi for 1 ≤ i ≤ s. �
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5. Quasigroup lifts

5.1. Covering quasigroups. The amalgamation concept of §3.6.3 is
now extended from magmas to quasigroups [9, pp.142–3]. While the
following result corresponds to [9, Prop. 2], the statement and proof are
made more transparent by the use of algebraic (quasigroup-theoretical)
rather than combinatorial (Latin square) techniques.

Proposition 5.1. Let (A, ·, /, \) be a quasigroup, yielding the weighted
quasigroup structure (A, εA, δ, δ

′,′δ) presented in Proposition 4.12. Let
f : (A,∆, εA) → (X,∆, εX) be a covering. Then the multiplication
function

α : X ×X ×X → N;(5.1)

(x, y, z) 7→
∣∣{(a, b) ∈ f−1{x} × f−1{y} | (ab)f = z}

∣∣
of Proposition 3.25 combines with the right division function

β : X ×X ×X → N;

(x, y, z) 7→
∣∣{(a, b) ∈ f−1{x} × f−1{y} | (a/b)f = z}

∣∣
and the left division function

γ : X ×X ×X → N;

(x, y, z) 7→
∣∣{(a, b) ∈ f−1{x} × f−1{y} | (a\b)f = z}

∣∣
to yield a weighted quasigroup (X, εX , α, β, γ).

Proof. The weighted magma condition (3.11) for the multiplication
function α was verified in the proof of Proposition 3.25.

By (4.5) from Definition 4.8(a), the right division function β that
accompanies the multiplication function α is βz(x, y) = αx(z, y) =∣∣{(c, b) ∈ f−1{z} × f−1{y} | (cb)f = x}

∣∣
=
∣∣{(c, b, a) ∈ f−1{z} × f−1{y} × f−1{x} | cb = a}

∣∣
=
∣∣{(c, b, a) ∈ f−1{z} × f−1{y} × f−1{x} | c = a/b}

∣∣
=
∣∣{(a, b) ∈ f−1{x} × f−1{y} | (a/b)f = z}

∣∣
for x, y, z in X. The weighted magma condition for this right division
function now follows by applying Proposition 3.25 to the magma (A, /).
Treatment of the left division function γ is similar. �

Definition 5.2. In the context of Proposition 5.1, the weighted quasi-
group (X, εX , α, β, γ) is variously said to lift to, or be covered by, or
be an amalgamation of, the quasigroup (A, ·, /, \).
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5.2. Lifting association schemes to quasigroups. The following
converse of Proposition 5.1 appeared in [8, Th. 1], [9, Th. 1].

Theorem 5.3. Suppose that (X,w, α) is a weighted quasigroup, of
gross weight W . Then (X,w, α) lifts to a quasigroup structure on a
set Q of cardinality W .

Corollary 5.4. Let (Q,Γ) be an association scheme. Then the weighted
quasigroups (Γ, w, α) and (Γ, w′, α′) of Theorem 4.16 lift to respective
quasigroup structures on the sets Q and Q2.

5.2.1. The Petersen graph and the Johnson scheme J(5, 2). On a base
set B of finite positive cardinality v, and for a parameter k ≤ bv/2c,
the Johnson scheme J(v, k) consists of the set Q of k-element subsets
of B together with the partition Γ = {C1, . . . , Ck+1} of Q, where

Ci = {(S, T ) ∈ Q2 | |S ∩ T | = k − i+ 1}

for 1 ≤ i ≤ k + 1 [3, §3.2]. It is the case J(5, 2) which is of interest
here, corresponding to the Petersen graph, as the Kneser graph KG5,2.
Specifically, the 10-element set Q may be taken as the vertex set of the
Petersen graph, and a vertex pair (S, T ) lies in Ci if and only if S and
T are at distance i− 1 in the graph.

The Bose-Mesner algebra of the scheme is given by

J(5, 2) C1 C2 C3

C1 C1 C2 C3

C2 C2 6 · C1 + 3 · C2 + 4 · C3 2 · C2 + 2 · C3

C3 C3 2 · C2 + 2 · C3 3 · C1 + C2

,

with nontrivial valencies n2 = 6 and n3 = 3. Then, although the
scheme J(5, 2) is known not to be the conjugacy class scheme of a
quasigroup [16, Cor. 4.3] [28, Cor. 8.3], Corollary 5.4 implies that the
weighted quasigroup (Γ, w, α) of Theorem 4.16, namely

(5.2)

Γ C1 C2 C3

C1 C1 6 · C2 3 · C3

C2 6 · C2 6 · C1 + 18 · C2 + 12 · C3 12 · C2 + 6 · C3

C3 3 · C3 12 · C2 + 6 · C3 3 · C1 + 6 · C2

,

does lift to a quasigroup structure on the set Q.
The lifting will be written as

t 7→ C1, o1, . . . , o6 7→ C2, n1, n2, n3 7→ C3 ,

where the symbols for the elements of Q stand for sets having two,
one, or no elements in their intersection with a given reference set.
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The multiplication table of one possible lift is

(5.3)

Q t o1 o2 o3 o4 o5 o6 n1 n2 n3

t t o1 o2 o3 o4 o5 o6 n1 n2 n3

o1 o1 o4 n1 n2 t o6 o2 o5 n3 o3

o2 o2 n1 o5 n3 o6 t o4 n2 o3 o1

o3 o3 n2 n3 o6 o2 o4 t o1 o5 n1

o4 o4 t o3 o2 o1 n2 n1 n3 o6 o5

o5 o5 o6 t o4 n1 o2 n3 o3 o1 n2

o6 o6 o1 o2 t n2 n3 o3 o5 n1 o4

n1 n1 o2 n2 o1 n3 o3 o5 t o4 o6

n2 n2 n3 o4 o5 o3 n1 o1 o6 o2 t
n3 n3 o3 o6 n1 o5 o1 n2 o4 t o2

.

Note that the table (5.3) was constructed manually, rather than with
the algorithm implicit in the proof of Theorem 5.3.

5.2.2. Group conjugacy class schemes.

Example 5.5. Suppose that Q is a group, with group conjugacy class
scheme (Q,Γ). Then the function f : Q → Γ; q 7→ qQ , which maps a
group element to its group conjugacy class, lifts the association scheme
weighted quasigroup (Γ, w, α) of Theorem 4.16, taken with the valency
augmentation, to the (quasi)group Q.

Remark 5.6. Two distinct groups may have the same character table,
and thus the same abstract group conjugacy class association scheme
[28, Th. 6.7]. The most elementary example consists of the dihedral
group D4 and quaternion group Q8 of order 8. Examples of this type
provide natural illustrations of a feature of Theorem 5.3, that a given
weighted quasigroup (X,w, α), of gross weight W , may lift to distinct
quasigroup structures of order W .

5.3. Quasigroup conjugacy class schemes. Example 5.5 noted that
a group conjugacy class scheme lifts to the corresponding group. The
following result presents the analogue for the quasigroup conjugacy
class schemes of arbitrary finite quasigroups, as presented in §2.3.3.

Theorem 5.7. Let Q be a nonempty quasigroup of finite order n, with
quasigroup conjugacy class scheme (Q,Γ). Then the weighted quasi-
group (Γ, w′, α′) of Theorem 4.16, with the relational augmentation,
lifts to the quasigroup Q2.

Proof. For conjugacy classes Ci, Cj (with 1 ≤ i, j ≤ s), consider the
rectangle in the multiplication table of Q2 comprising the table rows
labeled from Ci and the table columns labeled from Cj. This rectangle
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has |Ci| · |Cj| = n2ninj elements. For a conjugacy class Ck, it will be
shown that |Q| · |Ck|ckij of these elements lie in Ck, thus confirming

that the weighted magma (Γ, w′, α′) of Theorem 4.16 lifts to Q2. In
essence, the combinatorial associative relation products Ci ◦ Cj in the
conjugacy class association scheme are correlated with the algebraic
nonassociative quasigroup multiplications in the Ci×Cj portion of the
multiplication table of Q2.

First, consider the number |Q| · |Ck|ckij. The initial factor |Q| (or n)

counts elements y of Q. The remaining factor |Ck|ckij counts triangles,
configurations

(5.4) u
Cj

  @@@@@@@

x

Ci

>>~~~~~~~

Ck

// z

with (x, z) ∈ Ck, (x, u) ∈ Ci, and (u, z) ∈ Cj. Indeed, there are
|Ck| = nnk elements (x, z) of Ck. For each such pair, there are ckij
elements u such that the triangle configuration (5.4) is realized. Thus
the |Q| · |Ck|ckij triangle quadruples 〈y, u, x, z〉 each index an arbitrary
element y of Q together with a triangle (5.4).

Now consider a fragment

(5.5)
(y\x, t\z)

(y, t) (x, z)

of the multiplication table of Q2, with (y, t) as a row label in Ci,
(y\x, t\z) as a column label in Cj, and (x, z) as a table body entry
in Ck. Such a table fragment is indexed by a table quadruple [y, t, x, z].
The transformations

(5.6) [y, t, x, z] 7→ 〈y, u, x, z〉 with u = t(y\x)

and

(5.7) 〈y, u, x, z〉 7→ [y, t, x, z] with t = u/(y\x)

are mutually inverse. The diagram

t � R(y\x)
// u

Cj

��;;;;;;;;; y\x
Cj

!!CCCCCCCC
�L(t)

oo

y

Ci

BB����������
R(y\x)

// x

Ci

AA���������

Ck

// z t\z�L(t)
oo

confirms that
(x, u) = (y, t)R(y\x) ∈ CiG = Ci
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and
(u, z) = (y\x, t\z)L(t) ∈ CjG = Cj ,

so (5.6) really does map a table quadruple to a triangle quadruple.
Conversely, it also confirms that

(y, t) = (x, u)R(y\x)−1 ∈ CiG = Ci

and
(y\x, t\z) = (u, z)L(t)−1 ∈ CjG = Cj ,

so (5.7) really does map a triangle quadruple to a table quadruple. �

Remark 5.8. Let (Q, ·, /, \) be a nonempty finite quasigroup, with
conjugacy class scheme (Q,Γ). The augmented quasigroup

(NΓ, µ, ρ, λ,∆, ε)

in the category (N,⊗,N) has the relational augmentation (3.16), with

µ : Ci ⊗ Cj 7→ [Ck 7→ ckij|Q| · |Ck| ]
as the multiplication structure, with

(5.8) ρ : Ck ⊗ Cj 7→ [Ci 7→ ckij|Q| · |Ck| ]
as the right division structure, and with

λ : Ci ⊗ Ck 7→ [Cj 7→ ckij|Q| · |Ck| ]
as the left division structure.

The right division structure (5.8) must not be confused with the
multiplication structure in the augmented quasigroup NΓ(Q, /) which is
determined by the conjugate quasigroup (Q, /). For example, if (Q,+)
is an abelian group with conjugacy class scheme

(
(Q,+),Γ(Q,+)

)
, then

|Γ(Q,+)| = |Q|: the scheme is thin. But the right division conjugate
is (Q,−), with conjugacy class scheme

(
(Q,−),Γ(Q,−)

)
and one has

|Γ(Q,−)| < |Q| if |Q| > 2 [28, Th. 6.9].

5.4. Character quasigroups of finite groups. If A is an abelian
group of finite order n, then the character group Ã is also an abelian
group of finite order n.3 There is a full duality, in the sense that A is

recovered from Ã as (isomorphic to) the double dual ˜̃A.
Aspects of this duality are now extended to nonabelian groups. Let

A be an arbitrary group of finite order n. According to Example 5.5,
the nonabelian group A amalgamates to the weighted quasigroup of its
group conjugacy class scheme. Then there are character quasigroups Ã
of finite order n which amalgamate to the weighted quasigroup of the

3The notation Ã is used in preference to the more customary Â here, in order to
avoid conflict with the diagonal or equality relation on A.
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dual of the group conjugacy class scheme of A. As noted in Remark 5.6,
a full duality, recovering A from Ã, cannot be expected here.

Proposition 5.9. Let A be a group of finite order n. Let (A,Γ) be

the group conjugacy class scheme of A, with dual scheme (A, Γ̃). Then

the augmented quasigroup (R+Γ̃, µ, ρ, λ,∆, ε) of Corollary 4.20 restricts

to an augmented quasigroup (NΓ̃, µ, ρ, λ,∆, ε) in the compact closed
category (N,⊗,N).

Proof. As noted in [2, Exs. 1.1, 3.1], the Krein parameter in this case
is

ĉkij =
χi(1)χj(1)

χk(1)
Nk
ij ,

whereNk
ij is the multiplicity of the irreducible character χk in the tensor

product χi ⊗ χj. Thus the multiplication structure

µ : R+Γ̃⊗ R+Γ̃→ R+Γ̃∗;xi ⊗ xj 7→
[
xk 7→ ĉkijκk

]
restricts to

µ : NΓ̃⊗ NΓ̃→ NΓ̃∗;xi ⊗ xj 7→
[
xk 7→ χi(1)χj(1)χk(1)Nk

ij

]
in (N,⊗,N). �

In this situation, it is convenient to identify Γ̃ directly with the set
{χ1, . . . , χs} of irreducible characters of the group A. Then the Krein
parameters may be written as

ĉkij =
χi(1)χj(1)

χk(1)
(χiχj|χk)A

with the scalar product

(ϕ|ψ)A =
1

n

∑
a∈A

ϕ(a)ψ(a)

for functions ϕ, ψ : A→ C [27, §2.3].

Corollary 5.10. There is a weighted quasigroup (Γ̃, w, α, β, γ) with

(5.9) w : χi 7→ χi(1)2

and

(5.10) α : Γ̃× Γ̃× Γ̃→ N; (χi, χj, χk) 7→ χi(1)χj(1)χk(1) · (χiχj|χk)A
as the multiplication function.

Theorem 5.11. The weighted quasigroup (Γ̃, w, α) of Corollary 5.10
lifts to a quasigroup Ã of order n.
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Proof. The gross weight of the weighted quasigroup (Γ̃, w, α, β, γ) is∑s
i=1 χi(1)2 = n. Then the weighted quasigroup lifts to a quasigroup

of order n, by Theorem 5.3. �

Definition 5.12. A quasigroup lift Ã of (Γ̃, w, α) is called a character
quasigroup of the group A.

Example 5.13. If A is a finite abelian group, then the character group
of A is the unique character quasigroup of A.

Example 5.14. Consider the symmetric group S3 on three symbols,
with character table

S3 1 t c
χ1 1 1 1
χ2 1 −1 1
θ 2 0 −1

in the notation of [27, §2.5]. Note θ2 = χ1 +χ2 + θ, for example. Then
one may choose S̃3

∼= C3 × C2 as follows:

(5.11)

S̃3 χ1 χ2 θ1 θ2 θ3 θ4

χ1 χ1 χ2 θ1 θ2 θ3 θ4

χ2 χ2 χ1 θ2 θ1 θ4 θ3

θ1 θ1 θ2 θ3 θ4 χ1 χ2

θ2 θ2 θ1 θ4 θ3 χ2 χ1

θ3 θ3 θ4 χ1 χ2 θ1 θ2

θ4 θ4 θ3 χ2 χ1 θ2 θ1

,

with the covering

(5.12) f : S̃3 → Γ̃;χ1 7→ χ1, χ2 7→ χ2, θi 7→ θ .

By way of illustration, (5.1) yields

α : (θ, θ, θ) 7→
∣∣{(a, b) ∈ f−1{θ} × f−1{θ} | (ab)f = θ}

∣∣
= |{θ1, θ2}2 ∪ {θ3, θ4}2| = 8 = θ(1)3 · 1 ,

which combines with θ(1)2 = |f−1{θ}| = 4 from (3.9) and (5.9) to
recover the equation (θ2|θ)A = 1 from (5.10).

Note that this particular choice of S̃3 produces the character group
C̃6 of the cyclic group of order 6. However, to obtain the character
scheme of C6, the covering is bijective, unlike the covering (5.12) used
for S3 here.

Alternative choices for S̃3 are obtained, for example, by intercalate
changes (in the sense of [12, §3]), such as

(5.13)

[
θ3 θ4

θ4 θ3

]
7→
[
θ4 θ3

θ3 θ4

]
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in the middle of the body of the multiplication table (5.11).

6. Conclusions and future work

The paper has dealt with two main themes:

• Augmented structures in compact closed categories; and
• Covering quasigroups of weighted quasigroups.

These themes raise a number of questions that form a basis for future
work.

6.1. Augmented structures in compact closed categories. In
this paper, the augmented structures have been motivated primarily
by diverse algebras (character algebras, fusion algebras, Bose-Mesner
algebras, etc.) from algebraic combinatorics. These algebras typically
incorporate preferred bases as an intrinsic part of the data, which are
now encoded canonically by the augmentation and comultiplication.
Moving outside the domain of algebraic combinatorics, there are other
areas where algebras with selected bases make an appearance. For
a representative example, take the algebras with genetic realization
[25, 35] or stochastic algebras [22] of mathematical biology that are
used in the analysis of population genetics.

In the various application areas, relational structures may be used
in place of linear algebras with selected bases, particularly when one
wishes to adopt a qualitative or topological rather than quantitative or
geometric approach. (Compare [5], say, in algebraic combinatorics, or
[32] in population genetics.) The language of augmented structures in
compact closed categories now provides a framework for the unification
and comparative study of these various approaches.

6.2. Covering quasigroups of weighted quasigroups. Covering
quasigroups are constructed for Bose-Mesner algebras of association
schemes in §5.2, and for character algebras of finite groups in §5.4.
The latter construction extends abelian group duality to nonabelian
groups. These constructions open up new fields of study, designed to
answer the how, the what, and the why of covering quasigroups.

6.2.1. How are covering quasigroups obtained? The proof of the main
Theorem 5.3 given by Hilton and Wojciechowski in [8, Th. 1], [9, Th. 1]
relied on an iterative algorithm (detailed on [8, p.228]) for expanding a
weighted quasigroup to a covering quasigroup: row by row, column by
column, and symbol by symbol. The expansion is driven by de Werra’s
regularity result [34]. The general construction is purely combinatorial,
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and completely disregards any further structure that might be carried
by the weighted quasigroup in question.

On the other hand, the illustrative examples of covering quasigroups
provided in this paper, namely (5.3) for the Petersen graph or Johnson
scheme, and (5.11) for the character quasigroup of the symmetric group
S3, were both constructed manually, essentially by the kind of trial-
and-error procedure that lay people use to solve sudoku puzzles. This
procedure was guided to some extent by an awareness of the inner
structure of the given weighted quasigroup. Thus one pressing research
problem opened up by the current paper concerns the development of
more specific algorithms for the expansion of weighted quasigroups into
covering quasigroups that do take account of the structure inherent to
the weighted quasigroups in question.

6.2.2. What covering quasigroups are obtained? It has been seen that
a given weighted quasigroup may well have several distinct covering
quasigroups. Certainly, the iterative construction algorithm of Hilton
and Wojciechowski, discussed in the preceding paragraph, may branch
at numerous steps and produce distinct covering quasigroups. A full
classification of these quasigroups would require a detailed tracing
of the algorithm. Emergence under the algorithm from a common
weighted quasigroup X of gross weight W defines a new relation, say
cogeneration relative to X, between certain quasigroups of the same
cardinality W . An inverse problem is to examine all the weighted
quasigroups of gross weight W that are covered by a given quasigroup
of cardinality W . More completely, covering builds a bipartite graph
between the set of weighted quasigroups of given gross weight W , and
the set of quasigroups of cardinality W .

A direct way to obtain a new covering quasigroup A′ from a given one
A, both lifting from a specific weighted quasigroup X, is by the kind of
intercalate change, compatible with the constraints of the lifting, that
is exhibited in (5.13). Classification of all the compatible intercalate
changes within a given lifting situation would be relatively tractable.

Remark 5.6 went beyond the kind of combinatorial coincidences that
have been discussed so far in this paragraph, suggesting deeper reasons,
at least in certain situations, that a given weighted quasigroup might
lift to distinct covering quasigroups. It would be instructive to locate
similar examples of such phenomena.

Now, rather than seeking to identify distinct lifts of a given weighted
quasigroup, an alternative question to is ask for a specific covering
quasigroup with particular desired properties. The covering quasigroup
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(5.11) provides an example: It is actually a group. This example raises
the following group-theoretical problem.

Problem 6.1. Let A be a finite, solvable group. Let A1, . . . , Al be the
set of cyclic groups appearing as the quotients of a composition series
for A. Under what circumstances is

⊕l
i=1Ai a character group for A?

6.2.3. What purposes may be served by covering quasigroups? Weighted
quasigroups from combinatorial contexts are not required or expected
to carry any additional algebraic structure (although [9] does couch
weighted quasigroups in an algebraic language of simplex zeroids). On
the other hand, covering quasigroups certainly share the rich general
algebraic structure of quasigroups, as outlined for example in [28], and
supplemented by the subsequent Sylow theory of quasigroups [20, 29].
Whenever a weighted quasigroup X is lifted to a covering quasigroup
Q, the lifting may then be used to transfer any selected part of the
algebraic structure of Q down to X, thereby enriching the structure of
the weighted quasigroup.

This process may be illustrated in the context of §5.4, where the
character structure of the symmetric group S3 was lifted to its character
group, the cyclic group C6. For notational convenience, implement
C6 as the additive group (Z/6,+) of residues modulo 6. Using this
notation, scalar multiplication by 3 (cubing in the character group)
has multiset action

〈0〉 7→ 〈0〉 , 〈3〉 7→ 〈3〉 , 〈1, 2, 4, 5〉 7→ 〈3, 0, 0, 3〉 ,

which maps down by the covering function (5.12) to

χ1 7→ χ1(1)χ1 , χ2 7→ χ2(1)χ2 , θ 7→ θ(1)(χ1 + χ2) ,

and thus reproduces the Adams operation

Ψ3(χ) : S3 → C; g 7→ χ(g3)

in the character ring of S3 (compare [27, §9.1, Exercise 3] [31, (4.1.2)])
with

Ψ3 : χ1 7→ χ1 , χ2 7→ χ2 , θ 7→ χ1 + χ2

as an extra structure on the weighted quasigroup.
In the context of association schemes, a natural first question about

the application of the covering quasigroups would be to investigate the
connections between their Sylow theory (as in [20, 29]) and the Sylow
theory of association schemes studied in [10], say.
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Appendix A. Quasigroups as quotients of groups

This appendix exhibits a nonempty quasigroup Q as a quotient of a
group G by a subgroup H which is not necessarily normal, based on
ideas going back to [1]. The notation of §2.3.1 is used.

Let (Q, ·, /, \) be a quasigroup with element e. Write e2 = e · e. If Q
is a group, an appropriate choice for e would be the identity element.
Define a quasigroup multiplication + on the set Q by

x+ y = (x/e) · (e\y) .

Note that x+ y = x · y if e is the identity element in a group (Q, ·). In
general, R+(q) = R·(e)

−1R·(e\q) for e, q in any quasigroup (Q, ·, /, \).
The respective quasigroup identities (IR) and (IL) imply that

(A.1) e2 + q = q

for q ∈ Q. Let G be the subgroup of the multiplication group of the
quasigroup (Q, ·, /, \) generated by

(A.2) T = {R+(q) | q ∈ Q} .

Let H be the stabilizer of e2 in the defining right action of G on Q.
Consider an element g of G. Suppose q = e2g in Q. Now by (A.1),

q = e2 + q = e2R+(q), whence gR+(q)−1 ∈ H and g ∈ HR+(q).
Thus (A.2) is a transversal to H in G, i.e., there is a disjoint union
decomposition

(A.3) G =
∑
q∈Q

HR+(q)

of the set G into cosets of H with representatives from T .

Theorem A.1. For x, y ∈ Q, the membership

(A.4) R+(xe)R+(ey) ∈ HR+(xy)

recovers the quasigroup product xy from the quotient structure (A.3) of
the group G by its subgroup H.

Proof. Using (A.1), the actions

e2 �R+(xe)
// e2 + (xe) = xe �R+(ey)

// xe+ ey = xy

witness the membership (A.4). �

Remark A.2. Note that Theorem A.1 specializes to Cayley’s Theorem
if e is the identity element of a group Q. In this case, the associativity
of Q renders H trivial.
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