Linear aspects of quasigroup triality

Alex W. Nowak
Iowa State University

Dissertation Defense

April 13, 2020

Summary

1 Quasigroups and triality

2 Linear quasigroup theory

3 Modules over Mendelsohn triple systems

4 Abelian groups in MTS

5 Beyond set-theoretic triality

Quasigroups and triality

Triality: a combinatorial perspective

(Q, \cdot) is a quasigroup when $T=\left\{(x, y, x \cdot y) \mid(x, y) \in Q^{2}\right\}$ has the Latin square property:

$$
\forall\left(x_{1}, x_{2}, x_{3}\right),\left(y_{1}, y_{2}, y_{3}\right) \in T,\left|\left\{1 \leq i \leq 3 \mid x_{i}=y_{i}\right\}\right| \neq 2 .
$$

Triality: a combinatorial perspective

(Q, \cdot) is a quasigroup when $T=\left\{(x, y, x \cdot y) \mid(x, y) \in Q^{2}\right\}$ has the Latin square property:

$$
\forall\left(x_{1}, x_{2}, x_{3}\right),\left(y_{1}, y_{2}, y_{3}\right) \in T,\left|\left\{1 \leq i \leq 3 \mid x_{i}=y_{i}\right\}\right| \neq 2 .
$$

For all $g \in S_{3}, T^{g}=\left\{\left(x_{1 g}, x_{2 g}, x_{3 g}\right) \mid\left(x_{1}, x_{2}, x_{3}\right) \in T\right\}$ also has the Latin square property.

Triality: a combinatorial perspective

($Q, \cdot)$ is a quasigroup when $T=\left\{(x, y, x \cdot y) \mid(x, y) \in Q^{2}\right\}$ has the Latin square property:
$\square \forall\left(x_{1}, x_{2}, x_{3}\right),\left(y_{1}, y_{2}, y_{3}\right) \in T,\left|\left\{1 \leq i \leq 3 \mid x_{i}=y_{i}\right\}\right| \neq 2$.
For all $g \in S_{3}, T^{g}=\left\{\left(x_{1 g}, x_{2 g}, x_{3 g}\right) \mid\left(x_{1}, x_{2}, x_{3}\right) \in T\right\}$ also has the Latin square property.

- If H is a subgroup of the kernel of this permutation action, then T is H-symmetric.

Triality: an algebraic perspective

$(Q, \cdot, /, \backslash)$ is a quasigroup when all the following hold:
(IL) $y \backslash(y \cdot x)=x$,
(IR) $x=(x \cdot y) / y$,
(SL) $y \cdot(y \backslash x)=x$,
(SR) $x=(x / y) \cdot y$.

Triality: an algebraic perspective

$(Q, \cdot, /, \backslash)$ is a quasigroup when all the following hold:

$$
\begin{aligned}
\text { (IL) } y \backslash(y \cdot x) & =x, & (\mathrm{IR}) & x
\end{aligned}=(x \cdot y) / y, ~(\mathrm{SR}) \quad x=(x / y) \cdot y .
$$

Multiplication groups

(Q, \cdot) is a quasigroup iff $R(q): x \mapsto x \cdot q$ and $L(q): x \mapsto q \cdot x$ are bijections.

Multiplication groups

(Q, \cdot) is a quasigroup iff $R(q): x \mapsto x \cdot q$ and $L(q): x \mapsto q \cdot x$ are bijections.
The group $\operatorname{Mlt}(Q)=\langle R(q), L(q)\rangle_{S_{Q}}$ acts transitively on Q.

Multiplication groups

(Q, \cdot) is a quasigroup iff $R(q): x \mapsto x \cdot q$ and $L(q): x \mapsto q \cdot x$ are bijections.
The group $\operatorname{MIt}(Q)=\langle R(q), L(q)\rangle_{S_{Q}}$ acts transitively on Q.

- Q is a subquasigroup of $Q[X]=Q \coprod_{\mathbf{V}}\langle X\rangle_{\mathbf{V}}$ and the subgroup of $\operatorname{Mlt}(Q[X])$ generated by $R(Q) \cup L(Q)$ is the universal multiplication group of Q in $\mathbf{V}, U(Q ; \mathbf{V})$.

Universal stabilizers

$U(Q ; \mathbf{V})$ also acts transitively on Q, so for any $e \in Q$, define $U(Q ; \mathbf{V})_{e}$ to be the universal stabilizer of Q in \mathbf{V}.

Universal stabilizers

$U(Q ; \mathbf{V})$ also acts transitively on Q, so for any $e \in Q$, define $U(Q ; \mathbf{V})_{e}$ to be the universal stabilizer of Q in \mathbf{V}.

Universal stabilizers

$U(Q ; \mathbf{V})$ also acts transitively on Q, so for any $e \in Q$, define $U(Q ; \mathbf{V})_{e}$ to be the universal stabilizer of Q in \mathbf{V}.

Define $T_{e}(q)=R(e \backslash q) L(q / e)^{-1}, R_{e}(q, r)=R(e \backslash q) R(r) R(e \backslash q r)^{-1}$, and $L_{e}(q, r)=L(q / e) L(r) L(r q / e)^{-1}$

Universal stabilizers

$U(Q ; \mathbf{V})$ also acts transitively on Q, so for any $e \in Q$, define $U(Q ; \mathbf{V})_{e}$ to be the universal stabilizer of Q in \mathbf{V}.

Define $T_{e}(q)=R(e \backslash q) L(q / e)^{-1}, R_{e}(q, r)=R(e \backslash q) R(r) R(e \backslash q r)^{-1}$, and $L_{e}(q, r)=L(q / e) L(r) L(r q / e)^{-1}$
$\square(Q ; \mathbf{V})_{e}$ will act on the fiber $p^{-1}\{e\}$ in a split extension $p: E \rightarrow Q$.

H-symmetry classes

Linear quasigroup theory

H-symmetry: modules as models

Q: $\mathbb{Z}\langle R, L\rangle$-modules

$$
x \cdot y=x^{R}+y^{L}, x / y=x^{R^{-1}}-y^{L R^{-1}}, x \backslash y=y^{L^{-1}}-x^{R L^{-1}}
$$

H-symmetry: modules as models

Q: $\mathbb{Z}\langle R, L\rangle$-modules

$$
x \cdot y=x^{R}+y^{L}, x / y=x^{R^{-1}}-y^{L R^{-1}}, x \backslash y=y^{L^{-1}}-x^{R L^{-1}}
$$

$\mathrm{C}(x y=y x): \mathbb{Z}\left[R^{ \pm 1}\right]$-modules
$\square x \cdot y=(x+y)^{R}, x / y=x^{R^{-1}}-y, x \backslash y=y^{R^{-1}}-x$

H-symmetry: modules as models

Q: $\mathbb{Z}\langle R, L\rangle$-modules

$$
x \cdot y=x^{R}+y^{L}, x / y=x^{R^{-1}}-y^{L R^{-1}}, x \backslash y=y^{L^{-1}}-x^{R L^{-1}}
$$

$\mathbf{C}(x y=y x): \mathbb{Z}\left[R^{ \pm 1}\right]$-modules
$x \cdot y=(x+y)^{R}, x / y=x^{R^{-1}}-y, x \backslash y=y^{R^{-1}}-x$
$\mathbf{L S}(y \cdot y x=x): \mathbb{Z}\left[R^{ \pm 1}\right]$-modules

$$
x \cdot y=x^{R}-y=x \backslash y, x / y=(x+y)^{R^{-1}},
$$

H-symmetry: modules as models

Q: $\mathbb{Z}\langle R, L\rangle$-modules

$$
x \cdot y=x^{R}+y^{L}, x / y=x^{R^{-1}}-y^{L R^{-1}}, x \backslash y=y^{L^{-1}}-x^{R L^{-1}}
$$

$\mathbf{C}(x y=y x): \mathbb{Z}\left[R^{ \pm 1}\right]$-modules
$x \cdot y=(x+y)^{R}, x / y=x^{R^{-1}}-y, x \backslash y=y^{R^{-1}}-x$
$\mathbf{L S}(y \cdot y x=x): \mathbb{Z}\left[R^{ \pm 1}\right]$-modules

$$
x \cdot y=x^{R}-y=x \backslash y, x / y=(x+y)^{R^{-1}},
$$

$\mathbf{P}(y \cdot x y=x): \mathbb{Z}[R] /\left(R^{3}+1\right)$-modules

$$
x \cdot y=x^{R}+y^{R^{-1}}, x / y=x^{R^{-1}}+y^{R}=x \backslash y
$$

H-symmetry: modules as models

Q: $\mathbb{Z}\langle R, L\rangle$-modules

$$
x \cdot y=x^{R}+y^{L}, x / y=x^{R^{-1}}-y^{L R^{-1}}, x \backslash y=y^{L^{-1}}-x^{R L^{-1}}
$$

$\mathbf{C}(x y=y x): \mathbb{Z}\left[R^{ \pm 1}\right]$-modules
$x \cdot y=(x+y)^{R}, x / y=x^{R^{-1}}-y, x \backslash y=y^{R^{-1}}-x$
$\mathbf{L S}(y \cdot y x=x): \mathbb{Z}\left[R^{ \pm 1}\right]$-modules

$$
x \cdot y=x^{R}-y=x \backslash y, x / y=(x+y)^{R^{-1}},
$$

$\mathbf{P}(y \cdot x y=x): \mathbb{Z}[R] /\left(R^{3}+1\right)$-modules

$$
x \cdot y=x^{R}+y^{R^{-1}}, x / y=x^{R^{-1}}+y^{R}=x \backslash y
$$

TS: \mathbb{Z}-modules

$$
x \cdot y=x / y=x \backslash y=-(x+y)
$$

Smith's quasigroup module theory

Just as in group theory, quasigroup module theory can be done in terms of split extensions $E=M \rtimes Q:(m, q)(n, r)=\left(m^{R(r)}+n^{L(q)}, q r\right)$.

Smith's quasigroup module theory

Just as in group theory, quasigroup module theory can be done in terms of split extensions $E=M \rtimes Q:(m, q)(n, r)=\left(m^{R(r)}+n^{L(q)}, q r\right)$.

These come from abelian groups in $\mathbf{V} / Q:(p: E \rightarrow Q,+,-, 0)$.

Smith's quasigroup module theory

Just as in group theory, quasigroup module theory can be done in terms of split extensions $E=M \rtimes Q:(m, q)(n, r)=\left(m^{R(r)}+n^{L(q)}, q r\right)$.

- These come from abelian groups in $\mathbf{V} / Q:(p: E \rightarrow Q,+,-, 0)$.

The abelian group M is defined on a fiber $E_{e}=\{x \in E \mid(x) p=e\}$.

Smith's quasigroup module theory

Just as in group theory, quasigroup module theory can be done in terms of split extensions $E=M \rtimes Q:(m, q)(n, r)=\left(m^{R(r)}+n^{L(q)}, q r\right)$.

- These come from abelian groups in $\mathbf{V} / Q:(p: E \rightarrow Q,+,-, 0)$.
- The abelian group M is defined on a fiber $E_{e}=\{x \in E \mid(x) p=e\}$.
$\square 0: Q \rightarrow E$ injects, so $E \cong_{\text {Set }} E_{e} \times \operatorname{Im}(Q) \cong_{\text {Set }} E_{e} \times Q$.

Smith's quasigroup module theory

Just as in group theory, quasigroup module theory can be done in terms of split extensions $E=M \rtimes Q:(m, q)(n, r)=\left(m^{R(r)}+n^{L(q)}, q r\right)$.

These come from abelian groups in $\mathbf{V} / Q:(p: E \rightarrow Q,+,-, 0)$.

- The abelian group M is defined on a fiber $E_{e}=\{x \in E \mid(x) p=e\}$.
$0: Q \rightarrow E$ injects, so $E \cong_{\text {Set }} E_{e} \times \operatorname{Im}(Q) \cong_{\text {Set }} E_{e} \times Q$.
- Fix $e \in Q$, and E_{e} is invariant under $U(Q ; \mathbf{V})_{e}$-action.

Smith's quasigroup module theory

Just as in group theory, quasigroup module theory can be done in terms of split extensions $E=M \rtimes Q:(m, q)(n, r)=\left(m^{R(r)}+n^{L(q)}, q r\right)$.

- These come from abelian groups in $\mathbf{V} / Q:(p: E \rightarrow Q,+,-, 0)$.
- The abelian group M is defined on a fiber $E_{e}=\{x \in E \mid(x) p=e\}$.
$0: Q \rightarrow E$ injects, so $E \cong_{\text {Set }} E_{e} \times \operatorname{Im}(Q) \cong_{\text {Set }} E_{e} \times Q$.
- Fix $e \in Q$, and E_{e} is invariant under $U(Q ; \mathbf{V})_{e}$-action.

The multiplication of E does not a priori situate E and M in \mathbf{V}.

Smith's quasigroup module theory

Just as in group theory, quasigroup module theory can be done in terms of split extensions $E=M \rtimes Q:(m, q)(n, r)=\left(m^{R(r)}+n^{L(q)}, q r\right)$.

- These come from abelian groups in $\mathbf{V} / Q:(p: E \rightarrow Q,+,-, 0)$.
- The abelian group M is defined on a fiber $E_{e}=\{x \in E \mid(x) p=e\}$.
$\square 0: Q \rightarrow E$ injects, so $E \cong_{\text {Set }} E_{e} \times \operatorname{Im}(Q) \cong_{\text {Set }} E_{e} \times Q$.
- Fix $e \in Q$, and E_{e} is invariant under $U(Q ; \mathbf{V})_{e}$-action.

The multiplication of E does not a priori situate E and M in \mathbf{V}.

- In order to situate E in \mathbf{V}, take identities that define the variety, "linearize them," and $\bmod \mathbb{Z} U(Q ; \mathbf{V})_{e}$ by their difference.

Smith's quasigroup module theory

Just as in group theory, quasigroup module theory can be done in terms of split extensions $E=M \rtimes Q:(m, q)(n, r)=\left(m^{R(r)}+n^{L(q)}, q r\right)$.

- These come from abelian groups in $\mathbf{V} / Q:(p: E \rightarrow Q,+,-, 0)$.
- The abelian group M is defined on a fiber $E_{e}=\{x \in E \mid(x) p=e\}$.
$\square 0: Q \rightarrow E$ injects, so $E \cong_{\text {Set }} E_{e} \times \operatorname{Im}(Q) \cong_{\text {Set }} E_{e} \times Q$.
- Fix $e \in Q$, and E_{e} is invariant under $U(Q ; \mathbf{V})_{e}$-action.

The multiplication of E does not a priori situate E and M in \mathbf{V}.

- In order to situate E in \mathbf{V}, take identities that define the variety, "linearize them," and mod $\mathbb{Z} U(Q ; \mathbf{V})_{e}$ by their difference.

Call this ring $\mathbb{Z} \mathbf{V} Q$. Modules over $\mathbb{Z} \mathbf{V} Q$ are equivalent to abelian groups in V / Q.

Modules over Mendelsohn triple systems

$U(Q ;$ MTS $)$

Because semisymmetry is equivalent to $L(q)=R(q)^{-1}, U(Q ;$ MTS $)$ is free over $R(Q)$.

- This is Theorem 3.1.8.

$U(Q ;$ MTS $)$

Because semisymmetry is equivalent to $L(q)=R(q)^{-1}, U(Q ;$ MTS $)$ is free over $R(Q)$.

- This is Theorem 3.1.8.
- The universal stabilizer $U(Q ; \text { MTS })_{e}$ is free over

$$
\left\{R_{e}(e, e), R_{e}(q, r), T_{e}(q) \mid(q, r) \in Q^{\#} \times Q, q r \neq e\right\}
$$

This is Remark 3.2.4.

$U(Q ;$ MTS $)$

Because semisymmetry is equivalent to $L(q)=R(q)^{-1}, U(Q ;$ MTS $)$ is free over $R(Q)$.

- This is Theorem 3.1.8.
- The universal stabilizer $U(Q ; \text { MTS })_{e}$ is free over

$$
\left\{R_{e}(e, e), R_{e}(q, r), T_{e}(q) \mid(q, r) \in Q^{\#} \times Q, q r \neq e\right\}
$$

This is Remark 3.2.4.
If $|Q|=n<\infty$, then $\operatorname{rank}\left(U(Q ; \mathbf{M T S})_{e}\right)=n^{2}-n+1$.

Linearization of MTS identities

$$
\frac{\partial(y x \cdot y)}{\partial y}=R(x) R(y)+R(y x)^{-1} \text { and } \frac{\partial x}{\partial y}=0
$$

Linearization of MTS identities

$$
\begin{aligned}
& \frac{\partial(y x \cdot y)}{\partial y}=R(x) R(y)+R(y x)^{-1} \text { and } \frac{\partial x}{\partial y}=0 \\
& \quad J=\left(R(y e)\left(R(x) R(y)+R(y x)^{-1}-0\right) R(x e)^{-1}\right) \\
& \quad-\mathbb{Z} \mathbf{P} Q=\mathbb{Z} G_{e} / J
\end{aligned}
$$

Linearization of MTS identities

$\frac{\partial(y x \cdot y)}{\partial y}=R(x) R(y)+R(y x)^{-1}$ and $\frac{\partial x}{\partial y}=0$

- $J=\left(R(y e)\left(R(x) R(y)+R(y x)^{-1}-0\right) R(x e)^{-1}\right)$
- $\mathbb{Z} \mathbf{P} Q=\mathbb{Z} G_{e} / J$
$\frac{\partial x^{2}}{\partial x}=R(x)+R(x)^{-1}$ and $\frac{\partial x}{\partial x}=1$
$\square I=J+\left(R(x e)\left(R(x)+R(x)^{-1}-1\right) R(x e)^{-1}\right)$
$\square \mathbb{Z} \operatorname{MTS} Q=\mathbb{Z} G_{e} / I$

$\mathbb{Z M T S Q}$

Proposition 3.3.8

Let Q be a finite, nonempty Mendelsohn quasigroup containing the element e, and set $Q^{\#}=Q \backslash\{e\}$. With (Q, \mathcal{B}) denoting the MTS associated with the quasigroup structure, use $\mathcal{B}^{\#}$ to denote the set of blocks in \mathcal{B} not containing the point e. Consider

$$
\begin{aligned}
& X_{1}=\left\{R_{e}(x, x)^{2}-R_{e}(x, x)+1 \mid x \in Q\right\} \\
& X_{2}=\left\{R_{e}(x, e) T_{e}(x e)+1 \mid x \in Q^{\#}\right\} \\
& X_{3}=\left\{R_{e}(x, y) R_{e}(x y, x) R_{e}(y, x y)+1 \mid(x y x y) \in \mathcal{B}^{\#}\right\},
\end{aligned}
$$

subsets of $\mathbb{Z} U(Q ; \operatorname{MTS})_{e}$. Then $\mathbb{Z M T S} Q$ is the quotient of the free group of rank $n^{2}-n+1$ by the ideal generated by $X_{1} \cup X_{2} \cup X_{3}$.

$\mathbb{Z M T S Q}$, abstractly

Theorem 3.3.9
Let Q be a nonempty, semisymmetric, idempotent quasigroup, with associated MTS (Q, \mathcal{B}). Define $\mathcal{B}^{\#}$ to be the set of all blocks not containing e. Then $\mathbb{Z M T S} Q$ is isomorphic to the free product

$$
\begin{equation*}
\coprod_{Q} \mathbb{Z}[\zeta] * \coprod_{Q^{\#}} \mathbb{Z}\langle x\rangle * \coprod_{\mathcal{B}^{\#}} \mathbb{Z}\langle x, y\rangle, \tag{1}
\end{equation*}
$$

where $\mathbb{Z}[\zeta]=\mathbb{Z}[X] /\left(X^{2}-X+1\right)$ is the ring of Eisenstein integers.

Abelian groups in MTS

The Eisenstein integers

The Eisenstein integers have presentation $\mathbb{Z}[X] /\left(X^{2}-X+1\right) \cong \mathbb{Z}[\zeta]=\{a+b \zeta \mid a, b \in \mathbb{Z}\}$, where $\zeta=e^{\pi i / 3}=\frac{1}{2}+\frac{\sqrt{3}}{2} i$.

The Eisenstein integers

- The Eisenstein integers have presentation $\mathbb{Z}[X] /\left(X^{2}-X+1\right) \cong \mathbb{Z}[\zeta]=\{a+b \zeta \mid a, b \in \mathbb{Z}\}$, where $\zeta=e^{\pi i / 3}=\frac{1}{2}+\frac{\sqrt{3}}{2} i$.
- Under $v: a+b \zeta \mapsto a^{2}+a b+b^{2}, \mathbb{Z}[\zeta]$ is a Euclidean domain (PID. . . nice!)

A finite $\mathbb{Z}[\zeta]$-module M is isomorphic to a direct sum

$$
\bigoplus_{i=1}^{n} \mathbb{Z}[\zeta] /\left(\pi_{i}^{r_{i}}\right)
$$

where each π_{i} is prime in $\mathbb{Z}[\zeta]$. The elementary divisors of M, $\pi_{1}^{r_{1}}, \ldots, \pi_{m}^{r_{m}}$, are unique, up to multiplication by units.

Eisenstein primes

There are three classes of Eisenstein primes. Up to association by units $\{ \pm 1, \pm \zeta, \pm \bar{\zeta}\}$, they take the forms
1π, where $p=\pi v \equiv 1 \bmod 3$ is a split prime in \mathbb{Z}

$$
\mathbb{Z}[\zeta] /\left(\pi^{n}\right) \cong \mathbb{Z} / p^{n}
$$

Eisenstein primes

There are three classes of Eisenstein primes. Up to association by units $\{ \pm 1, \pm \zeta, \pm \bar{\zeta}\}$, they take the forms
1π, where $p=\pi v \equiv 1 \bmod 3$ is a split prime in \mathbb{Z}
$-\mathbb{Z}[\zeta] /\left(\pi^{n}\right) \cong \mathbb{Z} / p^{n}$
$2 p \in \mathbb{Z}$, with $p \equiv 2 \bmod 3$, is prime in \mathbb{Z} and $\mathbb{Z}[\zeta]$; call these inert primes
$\square \mathbb{Z}[\zeta] /\left(p^{n}\right) \cong \mathbb{Z} / p^{n}[\zeta]$

Eisenstein primes

There are three classes of Eisenstein primes. Up to association by units $\{ \pm 1, \pm \zeta, \pm \bar{\zeta}\}$, they take the forms
1π, where $p=\pi v \equiv 1 \bmod 3$ is a split prime in \mathbb{Z}

$$
\mathbb{Z}[\zeta] /\left(\pi^{n}\right) \cong \mathbb{Z} / p^{n}
$$

$2 p \in \mathbb{Z}$, with $p \equiv 2 \bmod 3$, is prime in \mathbb{Z} and $\mathbb{Z}[\zeta]$; call these inert primes
$\square \mathbb{Z}[\zeta] /\left(p^{n}\right) \cong \mathbb{Z} / p^{n}[\zeta]$
$31+\zeta$ makes $3=(1+\zeta)(1+\bar{\zeta})$ ramified over $\mathbb{Z}[\zeta]$

$$
\begin{aligned}
& -\mathbb{Z}[\zeta] /\left((1+\zeta)^{2 n}\right) \cong \mathbb{Z} / 3^{n}[\zeta], \\
& \mathbb{Z}[\zeta] /\left((1+\zeta)^{2 n+1}\right) \cong \mathbb{Z}[X] /\left(3^{n+1}, 3^{n} X, X^{2}-X+1\right)
\end{aligned}
$$

Eisenstein primes

There are three classes of Eisenstein primes. Up to association by units $\{ \pm 1, \pm \zeta, \pm \bar{\zeta}\}$, they take the forms
1π, where $p=\pi v \equiv 1 \bmod 3$ is a split prime in \mathbb{Z}

$$
\mathbb{Z}[\zeta] /\left(\pi^{n}\right) \cong \mathbb{Z} / p^{n}
$$

$2 p \in \mathbb{Z}$, with $p \equiv 2 \bmod 3$, is prime in \mathbb{Z} and $\mathbb{Z}[\zeta]$; call these inert primes

$$
\square \mathbb{Z}[\zeta] /\left(p^{n}\right) \cong \mathbb{Z} / p^{n}[\zeta]
$$

$$
\begin{aligned}
& 31+\zeta \text { makes } 3=(1+\zeta)(1+\bar{\zeta}) \text { ramified over } \mathbb{Z}[\zeta] \\
& \quad-\mathbb{Z}[\zeta] /\left((1+\zeta)^{2 n}\right) \cong \mathbb{Z} / 3^{n}[\zeta], \\
& \quad \mathbb{Z}[\zeta] /\left((1+\zeta)^{2 n+1}\right) \cong \mathbb{Z}[X] /\left(3^{n+1}, 3^{n} X, X^{2}-X+1\right)
\end{aligned}
$$

Call affine MTS of order coprime to 3 affine, non-ramified (ANR).

A structure theorem for affine MTS

Theorem not in current draft (close to Thm. 4.4.5)
Every affine MTS has an essentially unique, indecomposable factorization of the form

$$
\prod_{i=1}^{n} \operatorname{Aff}\left(M_{i}, R_{i}\right)
$$

where M_{i} stands for the abelian group structure on $\mathbb{Z}[\zeta] /\left(\pi_{i}^{r_{i}}\right)$, the quotient of $\mathbb{Z}[\zeta]$ by a primary ideal.

$$
\begin{aligned}
& M \cong N \Longleftrightarrow \operatorname{Aff}(M) \cong \operatorname{Aff}(N) \text { and } \\
& \operatorname{Aff}\left(M_{1} \oplus M_{2}\right) \cong \operatorname{Aff}\left(M_{1}\right) \times \operatorname{Aff}\left(M_{2}\right)
\end{aligned}
$$

A structure theorem for affine MTS

Theorem not in current draft (close to Thm. 4.4.5)
Every affine MTS has an essentially unique, indecomposable factorization of the form

$$
\prod_{i=1}^{n} \operatorname{Aff}\left(M_{i}, R_{i}\right)
$$

where M_{i} stands for the abelian group structure on $\mathbb{Z}[\zeta] /\left(\pi_{i}^{r_{i}}\right)$, the quotient of $\mathbb{Z}[\zeta]$ by a primary ideal.

- $M \cong N \Longleftrightarrow \operatorname{Aff}(M) \cong \operatorname{Aff}(N)$ and $\operatorname{Aff}\left(M_{1} \oplus M_{2}\right) \cong \operatorname{Aff}\left(M_{1}\right) \times \operatorname{Aff}\left(M_{2}\right)$
So now it suffices to describe MTS on $\left(\mathbb{Z} / p^{n}\right),\left(\mathbb{Z} / q^{n}\right)^{2},\left(\mathbb{Z} / 3^{n}\right)^{2}$, and $\mathbb{Z} / 3^{n} \oplus \mathbb{Z} / 3^{n+1}(p \equiv 1 \bmod 3$ and $q \equiv 2 \bmod 3)$.

Split primes: $1 \bmod 3$

Let $\pi \in \mathbb{Z}[\zeta]$ with $p:=\pi v \equiv 1 \bmod 3$.

Split primes: $1 \bmod 3$

Let $\pi \in \mathbb{Z}[\zeta]$ with $p:=\pi v \equiv 1 \bmod 3$.
Then $\mathbb{Z}[\zeta] /\left(\pi^{n}\right) \cong \mathbb{Z} / p^{n}$, so $\operatorname{Aut}\left(\mathbb{Z}[\zeta] /\left(\pi^{n}\right)\right) \cong\left(\mathbb{Z} / p^{n}\right)^{\times}$

Split primes: $1 \bmod 3$

Let $\pi \in \mathbb{Z}[\zeta]$ with $p:=\pi v \equiv 1 \bmod 3$.

- Then $\mathbb{Z}[\zeta] /\left(\pi^{n}\right) \cong \mathbb{Z} / p^{n}$, so $\operatorname{Aut}\left(\mathbb{Z}[\zeta] /\left(\pi^{n}\right)\right) \cong\left(\mathbb{Z} / p^{n}\right)^{\times}$
- $X^{2}-X+1$ has two roots modulo p^{n} (Donovan et. al., 2015); call them $a^{ \pm 1}$.

Split primes: $1 \bmod 3$

Let $\pi \in \mathbb{Z}[\zeta]$ with $p:=\pi v \equiv 1 \bmod 3$.

- Then $\mathbb{Z}[\zeta] /\left(\pi^{n}\right) \cong \mathbb{Z} / p^{n}$, so $\operatorname{Aut}\left(\mathbb{Z}[\zeta] /\left(\pi^{n}\right)\right) \cong\left(\mathbb{Z} / p^{n}\right)^{\times}$
- $X^{2}-X+1$ has two roots modulo p^{n} (Donovan et. al., 2015); call them $a^{ \pm 1}$.
$\left(\mathbb{Z}[\zeta] /\left(\pi^{n}\right), a^{ \pm 1}\right)$ are possible MTS isomorphism classes on $\mathbb{Z}[\zeta] /\left(\pi^{n}\right)$.

Inert primes: $2 \bmod 3$

Let p be a rational prime congruent to $2 \bmod 3$.

Inert primes: $2 \bmod 3$

Let p be a rational prime congruent to $2 \bmod 3$.
Then $\mathbb{Z}[\zeta] /\left(p^{n}\right) \cong \mathbb{Z} /_{p^{n}}[\zeta]$, so $\operatorname{Aut}\left(\mathbb{Z}[\zeta] /\left(p^{n}\right)\right) \cong \mathrm{GL}_{2}\left(\mathbb{Z} / p^{n}\right)$.

Inert primes: $2 \bmod 3$

Let p be a rational prime congruent to $2 \bmod 3$.
Then $\mathbb{Z}[\zeta] /\left(p^{n}\right) \cong \mathbb{Z} / p^{n}[\zeta]$, so $\operatorname{Aut}\left(\mathbb{Z}[\zeta] /\left(p^{n}\right)\right) \cong \mathrm{GL}_{2}\left(\mathbb{Z} / p^{n}\right)$.

- One isomorphism class on $\mathbb{Z}[\zeta] /\left(p^{n}\right)$; it is given by $\operatorname{Lin}\left(\mathbb{Z} / p^{n}[\zeta]\right):=\operatorname{Lin}\left(\left(\mathbb{Z} / p^{n}\right)^{2}, T\right)$, where T is the companion matrix of $X^{2}-X+1$.
- Proof Outline:
- Suffices to show $\exists v \in\left(\mathbb{Z} / p^{n}\right)^{2}$ so that $(v v A)^{\top} \in \mathrm{GL}_{2}\left(\mathbb{Z} / p^{n}\right)$ (Prokip, 2005) (*).

Inert primes: $2 \bmod 3$

Let p be a rational prime congruent to $2 \bmod 3$.
Then $\mathbb{Z}[\zeta] /\left(p^{n}\right) \cong \mathbb{Z} / p^{n}[\zeta]$, so $\operatorname{Aut}\left(\mathbb{Z}[\zeta] /\left(p^{n}\right)\right) \cong \mathrm{GL}_{2}\left(\mathbb{Z} / p^{n}\right)$.

- One isomorphism class on $\mathbb{Z}[\zeta] /\left(p^{n}\right)$; it is given by $\operatorname{Lin}\left(\mathbb{Z} / p^{n}[\zeta]\right):=\operatorname{Lin}\left(\left(\mathbb{Z} / p^{n}\right)^{2}, T\right)$, where T is the companion matrix of $X^{2}-X+1$.
- Proof Outline:

Suffices to show $\exists v \in\left(\mathbb{Z} / p^{n}\right)^{2}$ so that $(v v A)^{\top} \in \mathrm{GL}_{2}\left(\mathbb{Z} / p^{n}\right)$ (Prokip, 2005) (*).

Take the entries of A modulo p, and act on $(\mathbb{Z} / p)^{2}$. Because $X^{2}-X+1$ does not split modulo $p,(*)$ holds in the quotient.

Inert primes: $2 \bmod 3$

Let p be a rational prime congruent to $2 \bmod 3$.

- Then $\mathbb{Z}[\zeta] /\left(p^{n}\right) \cong \mathbb{Z} / p^{n}[\zeta]$, so $\operatorname{Aut}\left(\mathbb{Z}[\zeta] /\left(p^{n}\right)\right) \cong \mathrm{GL}_{2}\left(\mathbb{Z} / p^{n}\right)$.
- One isomorphism class on $\mathbb{Z}[\zeta] /\left(p^{n}\right)$; it is given by $\operatorname{Lin}\left(\mathbb{Z} / p^{n}[\zeta]\right):=\operatorname{Lin}\left(\left(\mathbb{Z} / p^{n}\right)^{2}, T\right)$, where T is the companion matrix of $X^{2}-X+1$.
- Proof Outline:

Suffices to show $\exists v \in\left(\mathbb{Z} / p^{n}\right)^{2}$ so that $(v v A)^{\top} \in \mathrm{GL}_{2}\left(\mathbb{Z} / p^{n}\right)$ (Prokip, 2005) (*).

Take the entries of A modulo p, and act on $(\mathbb{Z} / p)^{2}$. Because $X^{2}-X+1$ does not split modulo $p,(*)$ holds in the quotient.

- \mathbb{Z} / p^{n} is a local ring, so we can use Nakayama's Lemma to lift our basis modulo p to one modulo p^{n}.

A direct product decomposition theorem

Theorem 4.5.6
Every ANR MTS is isomorphic to a direct product of quasigroups of the form $\operatorname{Lin}\left(\mathbb{Z} / p_{1}^{n}, a^{ \pm 1}\right)$ and $\operatorname{Lin}\left(\mathbb{Z} / p_{2}^{n}[\zeta]\right)$ for $p_{1} \equiv 1 \bmod 3$ and $p_{2} \equiv 2$ mod 3 .

Enumeration of ANR MTS

- Denote integer partitions via multisets (X, μ).
- $P(n)=$ number of partitions of n
- $P_{E}(n)=$ number of partitions consisting of even parts.

Enumeration of ANR MTS

- Denote integer partitions via multisets (X, μ).
- $P(n)=$ number of partitions of n
- $P_{E}(n)=$ number of partitions consisting of even parts.

Theorem 4.5.7
Let $p \neq 3$ be prime. Then, up to isomorphism, the number of distributive MTS of order p^{n} is given by

$$
\sum_{(X, \mu) \vdash n} \sum_{r \in X}(\mu(r)+1) \text { whenever } p \equiv 1 \bmod 3 ;
$$

b.) $P_{E}(n)$ whenever $p \equiv 2 \bmod 3$.

Enumeration of ANR MTS

- Denote integer partitions via multisets (X, μ).
- $P(n)=$ number of partitions of n
- $P_{E}(n)=$ number of partitions consisting of even parts.

Theorem 4.5.7
Let $p \neq 3$ be prime. Then, up to isomorphism, the number of distributive MTS of order p^{n} is given by
$\sum_{(X, \mu) \vdash n} \sum_{r \in X}(\mu(r)+1)$ whenever $p \equiv 1 \bmod 3 ;$
b.) $P_{E}(n)$ whenever $p \equiv 2 \bmod 3$.
a.) comes from the fact that $\binom{2+\mu(r)-1}{\mu(r)}=\mu(r)+1$.

The ramified case

$\mathbb{Z}[\zeta] /(1+\zeta)^{2 k} \cong \mathbb{Z} / 3^{k}[\zeta]$, so even powers work just like inert primes.

The ramified case

$\mathbb{Z}[\zeta] /(1+\zeta)^{2 k} \cong \mathbb{Z} / 3^{k}[\zeta]$, so even powers work just like inert primes.

- However, $\mathbb{Z}[\zeta] /(1+\zeta)^{2 k+1} \cong \mathbb{Z}[X] /\left(X^{2}-X+1,3^{k} X, 3^{k+1}\right) \cong{ }_{\mathrm{Ab}} \mathbb{Z} / 3^{k} \oplus \mathbb{Z} / 3^{k+1}$.
- Leads to representation theory of mixed congruence classes.

The ramified case

$\square \mathbb{Z}[\zeta] /(1+\zeta)^{2 k} \cong \mathbb{Z} / 3^{k}[\zeta]$, so even powers work just like inert primes.

- However, $\mathbb{Z}[\zeta] /(1+\zeta)^{2 k+1} \cong \mathbb{Z}[X] /\left(X^{2}-X+1,3^{k} X, 3^{k+1}\right) \cong \mathrm{Ab} \mathbb{Z} / 3^{k} \oplus \mathbb{Z} / 3^{k+1}$.
- Leads to representation theory of mixed congruence classes.
- However, numerical evidence from the paper of Donovan et. al. seems to indicate that there is only one isomorphism class on each $\mathbb{Z}[\zeta] /(1+\zeta)^{2 k+1}$.

The ramified case

$\square \mathbb{Z}[\zeta] /(1+\zeta)^{2 k} \cong \mathbb{Z} / 3^{k}[\zeta]$, so even powers work just like inert primes.

- However, $\mathbb{Z}[\zeta] /(1+\zeta)^{2 k+1} \cong \mathbb{Z}[X] /\left(X^{2}-X+1,3^{k} X, 3^{k+1}\right) \cong \mathrm{Ab} \mathbb{Z} / 3^{k} \oplus \mathbb{Z} / 3^{k+1}$.
- Leads to representation theory of mixed congruence classes.
- However, numerical evidence from the paper of Donovan et. al. seems to indicate that there is only one isomorphism class on each $\mathbb{Z}[\zeta] /(1+\zeta)^{2 k+1}$.
- If this is true, then the number of affine MTS of order 3^{n} is $P(n)$.

Lifting the ramified case

Every matrix representation of ζ over $\mathbb{Z} / 3 \oplus \mathbb{Z} / 9$ and $\mathbb{Z} / 9 \oplus \mathbb{Z} / 27$ lifts to one in $\mathrm{SL}_{2}(\mathbb{Z})$.
If this holds for all powers of 3 , then, then the problem is solved. I obtained these lifts through a greedy search, and it may be possible to show that such a search must terminate.

Lifting the ramified case

Every matrix representation of ζ over $\mathbb{Z} / 3 \oplus \mathbb{Z} / 9$ and $\mathbb{Z} / 9 \oplus \mathbb{Z} / 27$ lifts to one in $\mathrm{SL}_{2}(\mathbb{Z})$.
If this holds for all powers of 3 , then, then the problem is solved.
to show that such a search must terminate.

Lifting the ramified case

Every matrix representation of ζ over $\mathbb{Z} / 3 \oplus \mathbb{Z} / 9$ and $\mathbb{Z} / 9 \oplus \mathbb{Z} / 27$ lifts to one in $\mathrm{SL}_{2}(\mathbb{Z})$.

- If this holds for all powers of 3 , then, then the problem is solved.
- I obtained these lifts through a greedy search, and it may be possible to show that such a search must terminate.

Beyond set-theoretic triality

Quantum quasigroups

A K-module A, endowed with multiplication $\nabla: A \otimes A \rightarrow A$ and comultiplication $\Delta: A \rightarrow A \otimes A$ is a quantum quasigroup if the composite maps

$$
\begin{array}{ll}
\mathrm{G}=\left(\Delta \otimes 1_{A}\right)\left(1_{A} \otimes \nabla\right) & \text { and } \\
\partial=\left(1_{A} \otimes \Delta\right)\left(\nabla \otimes 1_{A}\right) &
\end{array}
$$

are invertible.

Quantum quasigroups

A K-module A, endowed with multiplication $\nabla: A \otimes A \rightarrow A$ and comultiplication $\Delta: A \rightarrow A \otimes A$ is a quantum quasigroup if the composite maps

$$
\begin{array}{ll}
\mathrm{G}=\left(\Delta \otimes 1_{A}\right)\left(1_{A} \otimes \nabla\right) & \text { and } \\
\mathrm{\partial}=\left(1_{A} \otimes \Delta\right)\left(\nabla \otimes 1_{A}\right)
\end{array}
$$

are invertible.
What are some sufficient conditions for obtaining this configuration?

Beyond set-theoretic triality

