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Quasigroups and triality

Triality: a combinatorial perspective

(Q, ·) is a quasigroup when T = {(x, y, x · y) | (x, y) ∈ Q2} has the
Latin square property:

∀(x1, x2, x3), (y1, y2, y3) ∈ T, |{1 ≤ i ≤ 3 | xi = yi}| 6= 2.

For all g ∈ S3, T g = {(x1g, x2g, x3g) | (x1, x2, x3) ∈ T} also has the
Latin square property.
If H is a subgroup of the kernel of this permutation action, then T is
H-symmetric.
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Quasigroups and triality

Triality: an algebraic perspective

(Q, ·, /, \) is a quasigroup when all the following hold:

(IL) y\(y · x) = x, (IR) x = (x · y)/y,

(SL) y · (y\x) = x, (SR) x = (x/y) · y.

(Q, ·, /, \) oo
(12) //

3;
(23)

s{

(Q, ◦, \\, //)
ck

(23)

#+
(Q, \, //, ·)

gg

(12) ''

(Q, \\, ◦, /)
77

(12)ww
(Q, //, \, ◦) ks

(23)
+3 (Q, /, ·, \\)
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Quasigroups and triality

Multiplication groups

(Q, ·) is a quasigroup iff R(q) : x 7→ x · q and L(q) : x 7→ q · x are
bijections.
The group Mlt(Q) = 〈R(q), L(q)〉SQ

acts transitively on Q.
Q is a subquasigroup of Q[X] = Q

∐
V〈X〉V and the subgroup of

Mlt(Q[X]) generated by R(Q) ∪ L(Q) is the universal multiplication
group of Q in V, U(Q;V).
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Quasigroups and triality

Universal stabilizers

U(Q;V) also acts transitively on Q, so for any e ∈ Q, define
U(Q;V)e to be the universal stabilizer of Q in V.

rq

e

L(rq/e)
77

L(q/e)
++

R(e\qr) ''

R(e\q)
33 q

L(r)
gg

R(r)ww
qr

Define Te(q) = R(e\q)L(q/e)−1, Re(q, r) = R(e\q)R(r)R(e\qr)−1,
and Le(q, r) = L(q/e)L(r)L(rq/e)−1

U(Q;V)e will act on the fiber p−1{e} in a split extension p : E → Q.
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Quasigroups and triality

H-symmetry classes

Q

LS RS C P

TS

A. W. Nowak (ISU) Quasigroup Triality April 13, 2020



Linear quasigroup theory

Linear quasigroup theory
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Linear quasigroup theory

H-symmetry: modules as models

Q: Z〈R,L〉-modules
x · y = xR + yL, x/y = xR

−1 − yLR−1

, x\y = yL
−1 − xRL−1

C(xy = yx): Z[R±1]-modules
x · y = (x+ y)R, x/y = xR

−1 − y, x\y = yR
−1 − x

LS(y · yx = x): Z[R±1]-modules
x · y = xR − y = x\y, x/y = (x+ y)R

−1

,
P(y · xy = x): Z[R]/(R3 + 1)-modules

x · y = xR + yR
−1

, x/y = xR
−1

+ yR = x\y
TS: Z-modules

x · y = x/y = x\y = −(x+ y)
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Linear quasigroup theory

Smith’s quasigroup module theory

Just as in group theory, quasigroup module theory can be done in terms of
split extensions E = M oQ: (m, q)(n, r) = (mR(r) + nL(q), qr).

These come from abelian groups in V/Q: (p : E → Q,+,−, 0).
The abelian group M is defined on a fiber Ee = {x ∈ E | (x)p = e}.
0 : Q→ E injects, so E ∼=Set Ee × Im(Q) ∼=Set Ee ×Q.
Fix e ∈ Q, and Ee is invariant under U(Q;V)e-action.
The multiplication of E does not a priori situate E and M in V.

In order to situate E in V, take identities that define the variety,
“linearize them," and mod ZU(Q;V)e by their difference.

Call this ring ZVQ. Modules over ZVQ are equivalent to abelian
groups in V/Q.
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Modules over Mendelsohn triple systems

U(Q;MTS)

Because semisymmetry is equivalent to L(q) = R(q)−1, U(Q;MTS)
is free over R(Q).

This is Theorem 3.1.8.

The universal stabilizer U(Q;MTS)e is free over

{Re(e, e), Re(q, r), Te(q) | (q, r) ∈ Q# ×Q, qr 6= e}.

This is Remark 3.2.4.
If |Q| = n <∞, then rank(U(Q;MTS)e) = n2 − n+ 1.
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Modules over Mendelsohn triple systems

Linearization of MTS identities

∂(yx·y)
∂y = R(x)R(y) +R(yx)−1 and ∂x

∂y = 0

J =
(
R(ye)

(
R(x)R(y) +R(yx)−1 − 0

)
R(xe)−1

)
ZPQ = ZGe/J

∂x2

∂x = R(x) +R(x)−1 and ∂x
∂x = 1

I = J +
(
R(xe)

(
R(x) +R(x)−1 − 1

)
R(xe)−1

)
ZMTSQ = ZGe/I
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Modules over Mendelsohn triple systems

ZMTSQ

Proposition 3.3.8

Let Q be a finite, nonempty Mendelsohn quasigroup containing the element
e, and set Q# = Qr {e}. With (Q,B) denoting the MTS associated with
the quasigroup structure, use B# to denote the set of blocks in B not
containing the point e. Consider

X1 = {Re(x, x)2 −Re(x, x) + 1 | x ∈ Q}
X2 = {Re(x, e)Te(xe) + 1 | x ∈ Q#}
X3 = {Re(x, y)Re(xy, x)Re(y, xy) + 1 | (x y xy) ∈ B#},

subsets of ZU(Q;MTS)e. Then ZMTSQ is the quotient of the free
group of rank n2 − n+ 1 by the ideal generated by X1 ∪X2 ∪X3.
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Modules over Mendelsohn triple systems

ZMTSQ, abstractly

Theorem 3.3.9
Let Q be a nonempty, semisymmetric, idempotent quasigroup, with
associated MTS (Q,B). Define B# to be the set of all blocks not
containing e. Then ZMTSQ is isomorphic to the free product∐

Q

Z[ζ] ∗
∐
Q#

Z〈x〉 ∗
∐
B#

Z〈x, y〉, (1)

where Z[ζ] = Z[X]/(X2 −X + 1) is the ring of Eisenstein integers.
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Abelian groups in MTS
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Abelian groups in MTS

The Eisenstein integers

The Eisenstein integers have presentation
Z[X]/(X2 −X + 1) ∼= Z[ζ] = {a+ bζ | a, b ∈ Z},
where ζ = eπi/3 = 1

2 +
√
3
2 i.

Under υ : a+ bζ 7→ a2 + ab+ b2, Z[ζ] is a Euclidean domain
(PID. . . nice!)

A finite Z[ζ]-module M is isomorphic to a direct sum

n⊕
i=1

Z[ζ]/(πrii ),

where each πi is prime in Z[ζ]. The elementary divisors of M ,
πr11 , . . . , π

rm
m , are unique, up to multiplication by units.
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Abelian groups in MTS

Eisenstein primes

There are three classes of Eisenstein primes. Up to association by units
{±1,±ζ,±ζ}, they take the forms

1 π, where p = πυ ≡ 1 mod 3 is a split prime in Z
Z[ζ]/(πn) ∼= Z/pn

2 p ∈ Z, with p ≡ 2 mod 3, is prime in Z and Z[ζ]; call these inert
primes

Z[ζ]/(pn) ∼= Z/pn [ζ]

3 1 + ζ makes 3 = (1 + ζ)(1 + ζ) ramified over Z[ζ]

Z[ζ]/((1 + ζ)2n) ∼= Z/3n [ζ],
Z[ζ]/((1 + ζ)2n+1) ∼= Z[X]/(3n+1, 3nX,X2 −X + 1)

Call affine MTS of order coprime to 3 affine, non-ramified (ANR).
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Abelian groups in MTS

A structure theorem for affine MTS

Theorem not in current draft (close to Thm. 4.4.5)

Every affine MTS has an essentially unique, indecomposable factorization
of the form

n∏
i=1

Aff(Mi, Ri),

where Mi stands for the abelian group structure on Z[ζ]/(πrii ), the
quotient of Z[ζ] by a primary ideal.

M ∼= N ⇐⇒ Aff(M) ∼= Aff(N) and
Aff(M1 ⊕M2) ∼= Aff(M1)× Aff(M2)

So now it suffices to describe MTS on (Z/pn), (Z/qn)2, (Z/3n)2, and
Z/3n ⊕ Z/3n+1 (p ≡ 1 mod 3 and q ≡ 2 mod 3).
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Abelian groups in MTS

Split primes: 1 mod 3

Let π ∈ Z[ζ] with p := πυ ≡ 1 mod 3.
Then Z[ζ]/(πn) ∼= Z/pn , so Aut(Z[ζ]/(πn)) ∼= (Z/pn)×

X2 −X + 1 has two roots modulo pn (Donovan et. al., 2015); call
them a±1.
(Z[ζ]/(πn), a±1) are possible MTS isomorphism classes on Z[ζ]/(πn).
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Abelian groups in MTS

Inert primes: 2 mod 3

Let p be a rational prime congruent to 2 mod 3.
Then Z[ζ]/(pn) ∼= Z/pn [ζ], so Aut(Z[ζ]/(pn)) ∼= GL2(Z/pn).
One isomorphism class on Z[ζ]/(pn); it is given by
Lin(Z/pn [ζ]) := Lin((Z/pn)2, T ), where T is the companion matrix of
X2 −X + 1.
Proof Outline:

Suffices to show ∃v ∈ (Z/pn)2 so that (v vA)> ∈ GL2(Z/pn) (Prokip,
2005) (∗).
Take the entries of A modulo p, and act on (Z/p)2. Because
X2 −X + 1 does not split modulo p, (∗) holds in the quotient.
Z/pn is a local ring, so we can use Nakayama’s Lemma to lift our basis
modulo p to one modulo pn.
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Abelian groups in MTS

A direct product decomposition theorem

Theorem 4.5.6
Every ANR MTS is isomorphic to a direct product of quasigroups of the
form Lin(Z/pn1 , a

±1) and Lin(Z/pn2 [ζ]) for p1 ≡ 1 mod 3 and p2 ≡ 2
mod 3.
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Abelian groups in MTS

Enumeration of ANR MTS

Denote integer partitions via multisets (X,µ).
P (n) = number of partitions of n
PE(n) = number of partitions consisting of even parts.

Theorem 4.5.7
Let p 6= 3 be prime. Then, up to isomorphism, the number of distributive
MTS of order pn is given by

a.)
∑

(X,µ)`n

∑
r∈X

(µ(r) + 1) whenever p ≡ 1 mod 3;

b.) PE(n) whenever p ≡ 2 mod 3.

a.) comes from the fact that
(2+µ(r)−1

µ(r)

)
= µ(r) + 1.
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Abelian groups in MTS

The ramified case

Z[ζ]/(1 + ζ)2k ∼= Z/3k [ζ], so even powers work just like inert primes.
However,
Z[ζ]/(1+ζ)2k+1 ∼= Z[X]/(X2−X+1, 3kX, 3k+1) ∼=Ab Z/3k⊕Z/3k+1 .

Leads to representation theory of mixed congruence classes.
However, numerical evidence from the paper of Donovan et. al. seems
to indicate that there is only one isomorphism class on each
Z[ζ]/(1 + ζ)2k+1.

If this is true, then the number of affine MTS of order 3n is P (n).
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Abelian groups in MTS

Lifting the ramified case

Every matrix representation of ζ over Z/3 ⊕ Z/9 and Z/9 ⊕ Z/27 lifts
to one in SL2(Z).
If this holds for all powers of 3, then, then the problem is solved.
I obtained these lifts through a greedy search, and it may be possible
to show that such a search must terminate.
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Beyond set-theoretic triality

Quantum quasigroups

A K-module A, endowed with multiplication ∇ : A⊗A→ A and
comultiplication ∆ : A→ A⊗A is a quantum quasigroup if the composite
maps

G = (∆⊗ 1A)(1A ⊗∇) and
a = (1A ⊗∆)(∇⊗ 1A)

are invertible.
What are some sufficient conditions for obtaining this configuration?

A oo
(12) //

:B
(23)

z�

At ]e
(23)

�%
Al ``

(12)   

Atl==

(12)}}
Alt ks

(23)
+3 Ar
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Beyond set-theoretic triality

The End
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