Linear aspects of quasigroup triality

Alex W. Nowak Iowa State University

Dissertation Defense

April 13, 2020

Summary

- Quasigroups and triality
- 2 Linear quasigroup theory
- Modules over Mendelsohn triple systems
- 4 Abelian groups in MTS
- Beyond set-theoretic triality

Quasigroups and triality

Quasigroups and triality

A. W. Nowak (ISU)

Triality: a combinatorial perspective

- - $\forall (x_1, x_2, x_3), (y_1, y_2, y_3) \in T, |\{1 \le i \le 3 \mid x_i = y_i\}| \ne 2.$
- For all $g \in S_3$, $T^g = \{(x_{1g}, x_{2g}, x_{3g}) \mid (x_1, x_2, x_3) \in T\}$ also has the Latin square property.
- If H is a subgroup of the kernel of this permutation action, then T is H-symmetric.

Triality: a combinatorial perspective

- - $\forall (x_1, x_2, x_3), (y_1, y_2, y_3) \in T, |\{1 \le i \le 3 \mid x_i = y_i\}| \ne 2.$
- For all $g \in S_3$, $T^g = \{(x_{1g}, x_{2g}, x_{3g}) \mid (x_1, x_2, x_3) \in T\}$ also has the Latin square property.
- If H is a subgroup of the kernel of this permutation action, then T is H-symmetric.

Triality: a combinatorial perspective

- - $\forall (x_1, x_2, x_3), (y_1, y_2, y_3) \in T, |\{1 \le i \le 3 \mid x_i = y_i\}| \ne 2.$
- For all $g \in S_3$, $T^g = \{(x_{1g}, x_{2g}, x_{3g}) \mid (x_1, x_2, x_3) \in T\}$ also has the Latin square property.
- If H is a subgroup of the kernel of this permutation action, then T is H-symmetric.

Triality: an algebraic perspective

 $(Q,\cdot,/,\setminus)$ is a quasigroup when all the following hold:

(IL)
$$y \setminus (y \cdot x) = x$$
,

(IR)
$$x = (x \cdot y)/y$$
,

(SL)
$$y \cdot (y \setminus x) = x$$
,

(SR)
$$x = (x/y) \cdot y$$
.

Triality: an algebraic perspective

 $(Q,\cdot,/,\setminus)$ is a quasigroup when all the following hold:

(IL)
$$y \setminus (y \cdot x) = x$$
, (IR) $x = (x \cdot y)/y$,
(SL) $y \cdot (y \setminus x) = x$, (SR) $x = (x/y) \cdot y$.

Multiplication groups

- **(** Q, \cdot) is a quasigroup iff $R(q): x \mapsto x \cdot q$ and $L(q): x \mapsto q \cdot x$ are bijections.
- \blacksquare The group $\mathsf{Mlt}(Q) = \langle R(q), L(q) \rangle_{S_Q}$ acts transitively on Q
- **Q** is a subquasigroup of $Q[X] = Q \coprod_{\mathbf{V}} \langle X \rangle_{\mathbf{V}}$ and the subgroup of $\mathsf{Mlt}(Q[X])$ generated by $R(Q) \cup L(Q)$ is the *universal multiplication group of Q in* \mathbf{V} , $U(Q;\mathbf{V})$.

Multiplication groups

- (Q, \cdot) is a quasigroup iff $R(q): x \mapsto x \cdot q$ and $L(q): x \mapsto q \cdot x$ are bijections.
- The group $Mlt(Q) = \langle R(q), L(q) \rangle_{S_Q}$ acts transitively on Q.

A. W. Nowak (ISU)

Multiplication groups

- ullet (Q,\cdot) is a quasigroup iff $R(q):x\mapsto x\cdot q$ and $L(q):x\mapsto q\cdot x$ are bijections.
- The group $\mathsf{Mlt}(Q) = \langle R(q), L(q) \rangle_{S_Q}$ acts transitively on Q.
- **Q** is a subquasigroup of $Q[X] = Q \coprod_{\mathbf{V}} \langle X \rangle_{\mathbf{V}}$ and the subgroup of $\mathsf{Mlt}(Q[X])$ generated by $R(Q) \cup L(Q)$ is the *universal multiplication group of Q in* \mathbf{V} , $U(Q;\mathbf{V})$.

■ $U(Q; \mathbf{V})$ also acts transitively on Q, so for any $e \in Q$, define $U(Q; \mathbf{V})_e$ to be the *universal stabilizer of* Q *in* \mathbf{V} .

Define $T_e(q) = R(e \setminus q) L(q/e)^{-1}$, $R_e(q,r) = R(e \setminus q) R(r) R(e \setminus qr)^{-1}$ and $L_e(q,r) = L(q/e) L(r) L(rq/e)^{-1}$

 $U(Q;\mathbf{V})_e$ will act on the fiber $p^{-1}\{e\}$ in a split extension p:E o 0

■ $U(Q; \mathbf{V})$ also acts transitively on Q, so for any $e \in Q$, define $U(Q; \mathbf{V})_e$ to be the *universal stabilizer of* Q *in* \mathbf{V} .

- Define $T_e(q)=R(e\backslash q)L(q/e)^{-1}$, $R_e(q,r)=R(e\backslash q)R(r)R(e\backslash qr)^{-1}$, and $L_e(q,r)=L(q/e)L(r)L(rq/e)^{-1}$
- $ullet U(Q; \mathbf{V})_e$ will act on the fiber $p^{-1}\{e\}$ in a split extension p: E o Q

■ $U(Q; \mathbf{V})$ also acts transitively on Q, so for any $e \in Q$, define $U(Q; \mathbf{V})_e$ to be the *universal stabilizer of* Q *in* \mathbf{V} .

- Define $T_e(q) = R(e \setminus q) L(q/e)^{-1}$, $R_e(q,r) = R(e \setminus q) R(r) R(e \setminus qr)^{-1}$, and $L_e(q,r) = L(q/e) L(r) L(rq/e)^{-1}$
- $lacksquare U(Q; \mathbf{V})_e$ will act on the fiber $p^{-1}\{e\}$ in a split extension p: E o Q

■ $U(Q; \mathbf{V})$ also acts transitively on Q, so for any $e \in Q$, define $U(Q; \mathbf{V})_e$ to be the *universal stabilizer of* Q *in* \mathbf{V} .

- Define $T_e(q) = R(e \setminus q) L(q/e)^{-1}$, $R_e(q,r) = R(e \setminus q) R(r) R(e \setminus qr)^{-1}$, and $L_e(q,r) = L(q/e) L(r) L(rq/e)^{-1}$
- ullet $U(Q; \mathbf{V})_e$ will act on the fiber $p^{-1}\{e\}$ in a split extension $p: E \to Q$.

H-symmetry classes

A. W. Nowak (ISU)

Linear quasigroup theory

Linear quasigroup theory

Q: $\mathbb{Z}\langle R,L \rangle$ -modules

$$x \cdot y = x^R + y^L$$
, $x/y = x^{R^{-1}} - y^{LR^{-1}}$, $x \setminus y = y^{L^{-1}} - x^{RL^{-1}}$

- $lackbox{C}(xy=yx)\colon \mathbb{Z}[R^{\pm 1}]$ -modules
 - $x \cdot y = (x+y)^R$, $x/y = x^{R^{-1}} y$, $x \setminus y = y^{R^{-1}} x$
- **LS** $(y \cdot yx = x)$: $\mathbb{Z}[R^{\pm 1}]$ -modules
 - $x \cdot y = x^R y = x \setminus y, \ x/y = (x+y)^{R^{-1}}$
- $\mathbf{P}(y \cdot xy = x)$: $\mathbb{Z}[R]/(R^3 + 1)$ -modules
- $x \cdot y = x^R + y^{R^{-1}}, \ x/y = x^{R^{-1}} + y^R = x \setminus y$
- TS: ℤ-modules
 - $x \cdot y = x/y = x \setminus y = -(x+y)$

- **Q**: $\mathbb{Z}\langle R, L \rangle$ -modules
 - $x \cdot y = x^R + y^L$, $x/y = x^{R^{-1}} y^{LR^{-1}}$, $x \setminus y = y^{L^{-1}} x^{RL^{-1}}$
- $\mathbf{C}(xy=yx)$: $\mathbb{Z}[R^{\pm 1}]$ -modules
 - $x \cdot y = (x+y)^R$, $x/y = x^{R^{-1}} y$, $x \setminus y = y^{R^{-1}} x$
- **LS** $(y \cdot yx = x)$: $\mathbb{Z}[R^{\pm 1}]$ -modules
- $= \mathbf{P}(y \cdot xy x) \cdot \mathbb{Z}[R]/(R^3 + 1) \text{modules}$
- $\mathbf{F}(y \cdot xy = x). \ \mathbb{Z}[R]/(R + 1) \text{-inodules}$
- 'I'S: ∠-modules
 - $x \cdot y = x/y = x \backslash y = -(x+y)$

Q: $\mathbb{Z}\langle R, L \rangle$ -modules

$$x \cdot y = x^R + y^L$$
, $x/y = x^{R^{-1}} - y^{LR^{-1}}$, $x \setminus y = y^{L^{-1}} - x^{RL^{-1}}$

 $\mathbf{C}(xy=yx)$: $\mathbb{Z}[R^{\pm 1}]$ -modules

$$x \cdot y = (x+y)^R$$
, $x/y = x^{R^{-1}} - y$, $x \setminus y = y^{R^{-1}} - x$

LS $(y \cdot yx = x)$: $\mathbb{Z}[R^{\pm 1}]$ -modules

$$x \cdot y = x^R - y = x \setminus y, \ x/y = (x+y)^{R^{-1}}$$

- $\mathbf{P}(y \cdot xy = x)$: $\mathbb{Z}[R]/(R^3 + 1)$ -modules
- TS: 7-modules
 - $x \cdot y = x/y = x \setminus y = -(x+y)$

- **Q**: $\mathbb{Z}\langle R, L \rangle$ -modules
 - $x \cdot y = x^R + y^L$, $x/y = x^{R^{-1}} y^{LR^{-1}}$, $x \setminus y = y^{L^{-1}} x^{RL^{-1}}$
- $\mathbf{C}(xy=yx)$: $\mathbb{Z}[R^{\pm 1}]$ -modules
 - $x \cdot y = (x+y)^R$, $x/y = x^{R^{-1}} y$, $x \setminus y = y^{R^{-1}} x$
- **LS** $(y \cdot yx = x)$: $\mathbb{Z}[R^{\pm 1}]$ -modules
 - $x \cdot y = x^R y = x \setminus y, \ x/y = (x+y)^{R^{-1}},$
- $\mathbf{P}(y \cdot xy = x)$: $\mathbb{Z}[R]/(R^3 + 1)$ -modules
 - $x \cdot y = x^R + y^{R^{-1}}, x/y = x^{R^{-1}} + y^R = x \setminus y$
- \mathbf{TS} : \mathbb{Z} -modules
 - $x \cdot y = x/y = x \setminus y = -(x+y)$

- **Q**: $\mathbb{Z}\langle R, L \rangle$ -modules
 - $x \cdot y = x^R + y^L$, $x/y = x^{R^{-1}} y^{LR^{-1}}$, $x \setminus y = y^{L^{-1}} x^{RL^{-1}}$
- $\mathbf{C}(xy=yx)$: $\mathbb{Z}[R^{\pm 1}]$ -modules
 - $x \cdot y = (x+y)^R$, $x/y = x^{R^{-1}} y$, $x \setminus y = y^{R^{-1}} x$
- **LS** $(y \cdot yx = x)$: $\mathbb{Z}[R^{\pm 1}]$ -modules
 - $x \cdot y = x^R y = x \setminus y, \ x/y = (x+y)^{R^{-1}},$
- **P** $(y \cdot xy = x)$: $\mathbb{Z}[R]/(R^3 + 1)$ -modules
 - $x \cdot y = x^R + y^{R^{-1}}, x/y = x^{R^{-1}} + y^R = x \setminus y$
- $lue{TS}$: \mathbb{Z} -modules
 - $x \cdot y = x/y = x \setminus y = -(x+y)$

Just as in group theory, quasigroup module theory can be done in terms of split extensions $E=M\rtimes Q$: $(m,q)(n,r)=(m^{R(r)}+n^{L(q)},qr)$.

Just as in group theory, quasigroup module theory can be done in terms of split extensions $E=M\rtimes Q$: $(m,q)(n,r)=(m^{R(r)}+n^{L(q)},qr)$.

■ These come from abelian groups in V/Q: $(p: E \rightarrow Q, +, -, 0)$.

Just as in group theory, quasigroup module theory can be done in terms of split extensions $E=M\rtimes Q$: $(m,q)(n,r)=(m^{R(r)}+n^{L(q)},qr)$.

- These come from abelian groups in V/Q: $(p: E \rightarrow Q, +, -, 0)$.
 - The abelian group M is defined on a fiber $E_e = \{x \in E \mid (x)p = e\}$.

Just as in group theory, quasigroup module theory can be done in terms of split extensions $E=M\rtimes Q\colon (m,q)(n,r)=(m^{R(r)}+n^{L(q)},qr).$

- These come from abelian groups in V/Q: $(p: E \rightarrow Q, +, -, 0)$.
 - The abelian group M is defined on a fiber $E_e = \{x \in E \mid (x)p = e\}$.
 - $0: Q \to E$ injects, so $E \cong_{\mathbf{Set}} E_e \times \mathsf{Im}(Q) \cong_{\mathbf{Set}} E_e \times Q$.

Just as in group theory, quasigroup module theory can be done in terms of split extensions $E=M\rtimes Q\colon (m,q)(n,r)=(m^{R(r)}+n^{L(q)},qr).$

- These come from abelian groups in V/Q: $(p: E \rightarrow Q, +, -, 0)$.
 - The abelian group M is defined on a fiber $E_e = \{x \in E \mid (x)p = e\}$.
 - $lacksquare 0: Q o E \text{ injects, so } E \cong_{\mathbf{Set}} E_e imes \mathsf{Im}(Q) \cong_{\mathbf{Set}} E_e imes Q.$
 - **Fix** $e \in Q$, and E_e is invariant under $U(Q; \mathbf{V})_e$ -action.

Just as in group theory, quasigroup module theory can be done in terms of split extensions $E=M\rtimes Q\colon (m,q)(n,r)=(m^{R(r)}+n^{L(q)},qr).$

- These come from abelian groups in V/Q: $(p: E \rightarrow Q, +, -, 0)$.
 - The abelian group M is defined on a fiber $E_e = \{x \in E \mid (x)p = e\}$.
 - $0: Q \to E$ injects, so $E \cong_{\mathbf{Set}} E_e \times \mathsf{Im}(Q) \cong_{\mathbf{Set}} E_e \times Q$.
 - Fix $e \in Q$, and E_e is invariant under $U(Q; \mathbf{V})_e$ -action.
 - \blacksquare The multiplication of E does not a priori situate E and M in V.

Just as in group theory, quasigroup module theory can be done in terms of split extensions $E=M\rtimes Q$: $(m,q)(n,r)=(m^{R(r)}+n^{L(q)},qr)$.

- These come from abelian groups in V/Q: $(p: E \rightarrow Q, +, -, 0)$.
 - The abelian group M is defined on a fiber $E_e = \{x \in E \mid (x)p = e\}$.
 - $0: Q \to E$ injects, so $E \cong_{\mathbf{Set}} E_e \times \mathsf{Im}(Q) \cong_{\mathbf{Set}} E_e \times Q$.
 - Fix $e \in Q$, and E_e is invariant under $U(Q; \mathbf{V})_e$ -action.
 - The multiplication of E does not a priori situate E and M in V.
- In order to situate E in \mathbf{V} , take identities that define the variety, "linearize them," and mod $\mathbb{Z}U(Q;\mathbf{V})_e$ by their difference.

Call this ring $\mathbb{Z}VQ$. Modules over $\mathbb{Z}VQ$ are equivalent to abelian groups in \mathbb{Y}/Q

Just as in group theory, quasigroup module theory can be done in terms of split extensions $E=M\rtimes Q$: $(m,q)(n,r)=(m^{R(r)}+n^{L(q)},qr)$.

- These come from abelian groups in V/Q: $(p: E \rightarrow Q, +, -, 0)$.
 - The abelian group M is defined on a fiber $E_e = \{x \in E \mid (x)p = e\}$.
 - $0: Q \to E$ injects, so $E \cong_{\mathbf{Set}} E_e \times \mathsf{Im}(Q) \cong_{\mathbf{Set}} E_e \times Q$.
 - Fix $e \in Q$, and E_e is invariant under $U(Q; \mathbf{V})_e$ -action.
 - The multiplication of E does not a priori situate E and M in V.
- In order to situate E in \mathbf{V} , take identities that define the variety, "linearize them," and mod $\mathbb{Z}U(Q;\mathbf{V})_e$ by their difference.
 - Call this ring $\mathbb{Z}VQ$. Modules over $\mathbb{Z}VQ$ are equivalent to abelian groups in V/Q.

Modules over Mendelsohn triple systems

Modules over Mendelsohn triple systems

A. W. Nowak (ISU) Quasigroup Triality April 13, 2020

$U(Q; \mathbf{MTS})$

- Because semisymmetry is equivalent to $L(q) = R(q)^{-1}$, $U(Q; \mathbf{MTS})$ is free over R(Q).
 - This is Theorem 3.1.8.
- lacksquare The universal stabilizer $U(Q;\mathbf{MTS})_e$ is free over

$$\{R_e(e,e), R_e(q,r), T_e(q) \mid (q,r) \in Q^\# \times Q, qr \neq e\}$$

- This is Remark 3.2.4.
- If $|Q|=n<\infty$, then $\mathrm{rank}(U(Q;\mathbf{MTS})_e)=n^2-n+1$

$U(Q; \mathbf{MTS})$

- Because semisymmetry is equivalent to $L(q)=R(q)^{-1}$, $U(Q;\mathbf{MTS})$ is free over R(Q).
 - This is Theorem 3.1.8.
- lacksquare The universal stabilizer $U(Q;\mathbf{MTS})_e$ is free over

$$\{R_e(e,e), R_e(q,r), T_e(q) \mid (q,r) \in Q^\# \times Q, qr \neq e\}.$$

- This is Remark 3.2.4.
- If $|Q|=n<\infty$, then $\mathrm{rank}(U(Q;\mathbf{MTS})_e)=n^2-n+1$

$U(Q; \mathbf{MTS})$

- Because semisymmetry is equivalent to $L(q)=R(q)^{-1}$, $U(Q;\mathbf{MTS})$ is free over R(Q).
 - This is Theorem 3.1.8.
- lacksquare The universal stabilizer $U(Q;\mathbf{MTS})_e$ is free over

$$\{R_e(e,e), R_e(q,r), T_e(q) \mid (q,r) \in Q^\# \times Q, qr \neq e\}.$$

- This is Remark 3.2.4.
- If $|Q| = n < \infty$, then $\operatorname{rank}(U(Q; \mathbf{MTS})_e) = n^2 n + 1$.

Linearization of MTS identities

$$\frac{\partial (yx \cdot y)}{\partial y} = R(x)R(y) + R(yx)^{-1} \text{ and } \frac{\partial x}{\partial y} = 0$$

$$J = (R(ye)(R(x)R(y) + R(yx)^{-1} - 0)R(xe)^{-1}$$

$$\mathbb{Z}PQ = \mathbb{Z}G_e/J$$

$$\frac{\partial x^2}{\partial x} = R(x) + R(x)^{-1} \text{ and } \frac{\partial x}{\partial x} = 1$$

$$I = J + (R(xe)(R(x) + R(x)^{-1} - 1)R(xe)^{-1})$$

Linearization of MTS identities

$$\frac{\partial (yx \cdot y)}{\partial y} = R(x)R(y) + R(yx)^{-1} \text{ and } \frac{\partial x}{\partial y} = 0$$

$$I = \left(R(ye)\left(R(x)R(y) + R(yx)^{-1} - 0\right)R(xe)^{-1}\right)$$

$$\mathbb{Z}\mathbf{P}Q = \mathbb{Z}G_e/J$$

Linearization of MTS identities

$$\frac{\partial (yx \cdot y)}{\partial y} = R(x)R(y) + R(yx)^{-1} \text{ and } \frac{\partial x}{\partial y} = 0$$

$$J = \left(R(ye)\left(R(x)R(y) + R(yx)^{-1} - 0\right)R(xe)^{-1}\right)$$

$$\mathbb{Z}PQ = \mathbb{Z}G_e/J$$

$$\frac{\partial x^2}{\partial x} = R(x) + R(x)^{-1} \text{ and } \frac{\partial x}{\partial x} = 1$$

$$I = J + \left(R(xe)\left(R(x) + R(x)^{-1} - 1\right)R(xe)^{-1}\right)$$

$$\mathbb{Z}MTSQ = \mathbb{Z}G_e/I$$

$\mathbb{Z}\mathbf{MTS}Q$

Proposition 3.3.8

Let Q be a finite, nonempty Mendelsohn quasigroup containing the element e, and set $Q^\#=Q\smallsetminus\{e\}$. With (Q,\mathcal{B}) denoting the MTS associated with the quasigroup structure, use $\mathcal{B}^\#$ to denote the set of blocks in \mathcal{B} not containing the point e. Consider

$$X_{1} = \{R_{e}(x, x)^{2} - R_{e}(x, x) + 1 \mid x \in Q\}$$

$$X_{2} = \{R_{e}(x, e)T_{e}(xe) + 1 \mid x \in Q^{\#}\}$$

$$X_{3} = \{R_{e}(x, y)R_{e}(xy, x)R_{e}(y, xy) + 1 \mid (x \ y \ xy) \in \mathcal{B}^{\#}\},$$

subsets of $\mathbb{Z}U(Q; \mathbf{MTS})_e$. Then $\mathbb{Z}\mathbf{MTS}Q$ is the quotient of the free group of rank $n^2 - n + 1$ by the ideal generated by $X_1 \cup X_2 \cup X_3$.

$\mathbb{Z}\mathbf{MTS}Q$, abstractly

Theorem 3.3.9

Let Q be a nonempty, semisymmetric, idempotent quasigroup, with associated MTS (Q,\mathcal{B}) . Define $\mathcal{B}^{\#}$ to be the set of all blocks not containing e. Then $\mathbb{Z}\mathbf{MTS}Q$ is isomorphic to the free product

$$\coprod_{Q} \mathbb{Z}[\zeta] * \coprod_{Q^{\#}} \mathbb{Z}\langle x \rangle * \coprod_{\mathcal{B}^{\#}} \mathbb{Z}\langle x, y \rangle, \tag{1}$$

where $\mathbb{Z}[\zeta] = \mathbb{Z}[X]/(X^2 - X + 1)$ is the ring of Eisenstein integers.

Abelian groups in \mathbf{MTS}

A. W. Nowak (ISU) Quasigroup Triality April 13, 2020

The Eisenstein integers

- The Eisenstein integers have presentation $\mathbb{Z}[X]/(X^2-X+1)\cong\mathbb{Z}[\zeta]=\{a+b\zeta\mid a,b\in\mathbb{Z}\},$ where $\zeta=e^{\pi i/3}=\frac{1}{2}+\frac{\sqrt{3}}{2}i$.
- Under $v: a + b\zeta \mapsto a^2 + ab + b^2$, $\mathbb{Z}[\zeta]$ is a Euclidean domain (PID... nice!)

A finite $\mathbb{Z}[\zeta]$ -module M is isomorphic to a direct sum

$$\bigoplus_{i=1}^{n} \mathbb{Z}[\zeta]/(\pi_i^{r_i}),$$

where each π_i is prime in $\mathbb{Z}[\zeta]$. The elementary divisors of M, $\pi_1^{r_1}, \ldots, \pi_m^{r_m}$, are unique, up to multiplication by units.

The Eisenstein integers

- The Eisenstein integers have presentation $\mathbb{Z}[X]/(X^2-X+1)\cong\mathbb{Z}[\zeta]=\{a+b\zeta\mid a,b\in\mathbb{Z}\},$ where $\zeta=e^{\pi i/3}=\frac{1}{2}+\frac{\sqrt{3}}{2}i.$
- Under $v: a+b\zeta\mapsto a^2+ab+b^2$, $\mathbb{Z}[\zeta]$ is a Euclidean domain (PID. . . nice!)

A finite $\mathbb{Z}[\zeta]$ -module M is isomorphic to a direct sum

$$\bigoplus_{i=1}^n \mathbb{Z}[\zeta]/(\pi_i^{r_i}),$$

where each π_i is prime in $\mathbb{Z}[\zeta]$. The elementary divisors of M, $\pi_1^{r_1},\ldots,\pi_m^{r_m}$, are unique, up to multiplication by units.

- **1** π , where $p = \pi v \equiv 1 \mod 3$ is a *split* prime in \mathbb{Z}
 - $\mathbb{Z}[\zeta]/(\pi^n) \cong \mathbb{Z}/p^n$
- $ot 2 \quad p \in \mathbb{Z}, \text{ with } p \equiv 2 \mod 3, \text{ is prime in } \mathbb{Z} \text{ and } \mathbb{Z}[\zeta]; \text{ call these } iner$
- [3] $1+\zeta$ makes $3=(1+\zeta)(1+\zeta)$ ramified over $\mathbb{Z}[$
- - $\mathbb{Z}[\zeta]/((1+\zeta)^{2n+1}) \cong \mathbb{Z}[X]/(3n+1)$

- \blacksquare π , where $p = \pi v \equiv 1 \mod 3$ is a *split* prime in $\mathbb Z$
 - $\mathbb{Z}[\zeta]/(\pi^n) \cong \mathbb{Z}/p^n$
- **2** $p \in \mathbb{Z}$, with $p \equiv 2 \mod 3$, is prime in \mathbb{Z} and $\mathbb{Z}[\zeta]$; call these *inert* primes
 - $\mathbb{Z}[\zeta]/(p^n) \cong \mathbb{Z}/_{p^n}[\zeta]$
- $1+\zeta$ makes $3=(1+\zeta)(1+\overline{\zeta})$ ramified over $\mathbb Z$
- $\mathbb{Z}[\zeta]/((1+\zeta)^{2n}) \cong \mathbb{Z}/_{3^n}[\zeta],$
 - $\mathbb{Z}[\zeta]/((1+\zeta)^{2n+1}) \cong \mathbb{Z}[X]/(3^{n+1}, 3^n X, X^2 -$
- Call affine MTS of order coprime to 3 affine, non-ramified (ANR)

- **1** π , where $p = \pi v \equiv 1 \mod 3$ is a *split* prime in \mathbb{Z} $\mathbb{Z}[\zeta]/(\pi^n) \cong \mathbb{Z}/_{p^n}$
- **2** $p \in \mathbb{Z}$, with $p \equiv 2 \mod 3$, is prime in \mathbb{Z} and $\mathbb{Z}[\zeta]$; call these *inert* primes
 - $\mathbb{Z}[\zeta]/(p^n) \cong \mathbb{Z}/_{p^n}[\zeta]$
- 3 $1+\zeta$ makes $3=(1+\zeta)(1+\overline{\zeta})$ ramified over $\mathbb{Z}[\zeta]$
 - $\mathbb{Z}[\zeta]/((1+\zeta)^{2n}) \cong \mathbb{Z}/_{3^n}[\zeta],$ $\mathbb{Z}[\zeta]/((1+\zeta)^{2n+1}) \cong \mathbb{Z}[X]/(3^{n+1}, 3^n X, X^2 X + 1)$
- Call affine MTS of order coprime to 3 affine, non-ramified (ANR)

- **1** π , where $p = \pi v \equiv 1 \mod 3$ is a *split* prime in $\mathbb Z$
 - $\ \ \, \mathbb{Z}[\zeta]/(\pi^n)\cong \mathbb{Z}/_{p^n}$
- 2 $p \in \mathbb{Z}$, with $p \equiv 2 \mod 3$, is prime in \mathbb{Z} and $\mathbb{Z}[\zeta]$; call these *inert* primes
 - $\mathbb{Z}[\zeta]/(p^n) \cong \mathbb{Z}/_{p^n}[\zeta]$
- 3 $1+\zeta$ makes $3=(1+\zeta)(1+\overline{\zeta})$ ramified over $\mathbb{Z}[\zeta]$
 - $\mathbb{Z}[\zeta]/((1+\zeta)^{2n}) \cong \mathbb{Z}/_{3^n}[\zeta],$ $\mathbb{Z}[\zeta]/((1+\zeta)^{2n+1}) \cong \mathbb{Z}[X]/(3^{n+1}, 3^n X, X^2 X + 1)$
- Call affine MTS of order coprime to 3 affine, non-ramified (ANR).

A structure theorem for affine MTS

Theorem not in current draft (close to Thm. 4.4.5)

Every affine MTS has an essentially unique, indecomposable factorization of the form

$$\prod_{i=1}^{n} \mathsf{Aff}(M_i, R_i),$$

where M_i stands for the abelian group structure on $\mathbb{Z}[\zeta]/(\pi_i^{r_i})$, the quotient of $\mathbb{Z}[\zeta]$ by a primary ideal.

- $M \cong N \iff \mathsf{Aff}(M) \cong \mathsf{Aff}(N) \text{ and}$ $\mathsf{Aff}(M_1 \oplus M_2) \cong \mathsf{Aff}(M_1) \times \mathsf{Aff}(M_2)$
- So now it suffices to describe MTS on (\mathbb{Z}/p^n) , $(\mathbb{Z}/q^n)^2$, $(\mathbb{Z}/3^n)^2$, and $\mathbb{Z}/2n \oplus \mathbb{Z}/2n+1$ $(n \equiv 1 \mod 3 \text{ and } a \equiv 2 \mod 3)$.

A structure theorem for affine MTS

Theorem not in current draft (close to Thm. 4.4.5)

Every affine MTS has an essentially unique, indecomposable factorization of the form

$$\prod_{i=1}^{n} \mathsf{Aff}(M_i, R_i),$$

where M_i stands for the abelian group structure on $\mathbb{Z}[\zeta]/(\pi_i^{r_i})$, the quotient of $\mathbb{Z}[\zeta]$ by a primary ideal.

- $M \cong N \iff \mathsf{Aff}(M) \cong \mathsf{Aff}(N)$ and $\mathsf{Aff}(M_1 \oplus M_2) \cong \mathsf{Aff}(M_1) \times \mathsf{Aff}(M_2)$
- So now it suffices to describe MTS on (\mathbb{Z}/p^n) , $(\mathbb{Z}/q^n)^2$, $(\mathbb{Z}/3^n)^2$, and $\mathbb{Z}/3^n \oplus \mathbb{Z}/3^{n+1}$ $(p \equiv 1 \mod 3 \text{ and } q \equiv 2 \mod 3)$.

- Let $\pi \in \mathbb{Z}[\zeta]$ with $p := \pi v \equiv 1 \mod 3$.
- Then $\mathbb{Z}[\zeta]/(\pi^n) \cong \mathbb{Z}/p^n$, so $\operatorname{Aut}(\mathbb{Z}[\zeta]/(\pi^n)) \cong (\mathbb{Z}/p^n)^{\times}$
- $X^2 X + 1$ has two roots modulo p^n (Donovan et. al., 2015); call them $a^{\pm 1}$.
- $\mathbb{Z}[\zeta]/(\pi^n), a^{\pm 1}$ are possible MTS isomorphism classes on $\mathbb{Z}[\zeta]/(\pi^n)$

- Let $\pi \in \mathbb{Z}[\zeta]$ with $p := \pi v \equiv 1 \mod 3$.
- Then $\mathbb{Z}[\zeta]/(\pi^n)\cong \mathbb{Z}/_{p^n}$, so $\mathsf{Aut}(\mathbb{Z}[\zeta]/(\pi^n))\cong (\mathbb{Z}/_{p^n})^{ imes}$
- $\mathbb{Z}^2 X + 1$ has two roots modulo p^n (Donovan et. al., 2015); call them $a^{\pm 1}$.
- \blacksquare $(\mathbb{Z}[\zeta]/(\pi^n), a^{\pm 1})$ are possible MTS isomorphism classes on $\mathbb{Z}[\zeta]/(\pi^n)$

- Let $\pi \in \mathbb{Z}[\zeta]$ with $p := \pi v \equiv 1 \mod 3$.
- Then $\mathbb{Z}[\zeta]/(\pi^n)\cong \mathbb{Z}/_{p^n}$, so $\mathsf{Aut}(\mathbb{Z}[\zeta]/(\pi^n))\cong (\mathbb{Z}/_{p^n})^{ imes}$
- **a** $X^2 X + 1$ has two roots modulo p^n (Donovan et. al., 2015); call them $a^{\pm 1}$.
- $\blacksquare \ (\mathbb{Z}[\zeta]/(\pi^n), a^{\pm 1})$ are possible MTS isomorphism classes on $\mathbb{Z}[\zeta]/(\pi^n)$

- Let $\pi \in \mathbb{Z}[\zeta]$ with $p := \pi v \equiv 1 \mod 3$.
- Then $\mathbb{Z}[\zeta]/(\pi^n)\cong\mathbb{Z}/_{p^n}$, so $\mathsf{Aut}(\mathbb{Z}[\zeta]/(\pi^n))\cong(\mathbb{Z}/_{p^n})^{ imes}$
- X^2-X+1 has two roots modulo p^n (Donovan et. al., 2015); call them $a^{\pm 1}$
- ${f Z}[\zeta]/(\pi^n), a^{\pm 1})$ are possible MTS isomorphism classes on ${\Bbb Z}[\zeta]/(\pi^n).$

Inert primes: 2 mod 3

- Let p be a rational prime congruent to $2 \mod 3$.
- Then $\mathbb{Z}[\zeta]/(p^n) \cong \mathbb{Z}/p^n[\zeta]$, so $\operatorname{Aut}(\mathbb{Z}[\zeta]/(p^n)) \cong \operatorname{GL}_2(\mathbb{Z}/p^n)$.
- One isomorphism class on $\mathbb{Z}[\zeta]/(p^n)$; it is given by $\operatorname{Lin}(\mathbb{Z}/p^n[\zeta]) := \operatorname{Lin}((\mathbb{Z}/p^n)^2, T)$, where T is the companion matrix of $X^2 = X + 1$
- Proof Outline
 - Suffices to show $\exists v \in (\mathbb{Z}/p^n)^2$ so that $(v \ vA)^{\top} \in \mathsf{GL}_2(\mathbb{Z}/p^n)$ (Prokip, 2005) (*).
 - Take the entries of A modulo p, and act on $(\mathbb{Z}/p)^2$. Because
 - $X^2 X + 1$ does not split modulo p. (*) holds in the quotient.
 - \mathbb{Z}/p^n is a local ring, so we can use Nakayama's Lemma to lift our basis modulo n to one modulo p^n

Inert primes: 2 mod 3

- Let p be a rational prime congruent to $2 \mod 3$.
- Then $\mathbb{Z}[\zeta]/(p^n) \cong \mathbb{Z}/p^n[\zeta]$, so $\operatorname{Aut}(\mathbb{Z}[\zeta]/(p^n)) \cong \operatorname{GL}_2(\mathbb{Z}/p^n)$.
- One isomorphism class on $\mathbb{Z}[\zeta]/(p^n)$; it is given by $\operatorname{Lin}(\mathbb{Z}/p^n[\zeta]) := \operatorname{Lin}((\mathbb{Z}/p^n)^2, T)$, where T is the companion matrix of $X^2 X + 1$.
- Proof Outline:
 - Suffices to show $\exists v \in (\mathbb{Z}/p^n)^2$ so that $(v \ vA)^{\top} \in \mathsf{GL}_2(\mathbb{Z}/p^n)$ (Prokip, 2005) (*).
 - \blacksquare Take the entries of A modulo p, and act on $(\mathbb{Z}/p)^2$. Because
 - $X^2 X + 1$ does not split modulo p, (*) holds in the quotient
 - \mathbb{Z}/p^n is a local ring, so we can use Nakayama's Lemma to lift our basis modulo n to one modulo n^n

Inert primes: $2 \mod 3$

- Let p be a rational prime congruent to $2 \mod 3$.
- Then $\mathbb{Z}[\zeta]/(p^n) \cong \mathbb{Z}/p^n[\zeta]$, so $\operatorname{Aut}(\mathbb{Z}[\zeta]/(p^n)) \cong \operatorname{GL}_2(\mathbb{Z}/p^n)$.
- One isomorphism class on $\mathbb{Z}[\zeta]/(p^n)$; it is given by $\operatorname{Lin}(\mathbb{Z}/p^n[\zeta]) := \operatorname{Lin}((\mathbb{Z}/p^n)^2, T)$, where T is the companion matrix of $X^2 X + 1$.
- Proof Outline:
 - Suffices to show $\exists v \in (\mathbb{Z}/p^n)^2$ so that $(v \ vA)^{\top} \in \mathsf{GL}_2(\mathbb{Z}/p^n)$ (Prokip, 2005) (*).
 - Take the entries of A modulo p, and act on $(\mathbb{Z}/p)^2$. Because $X^2 X + 1$ does not split modulo p, (*) holds in the quotient.
 - \mathbb{Z}/p^n is a local ring, so we can use Nakayama's Lemma to lift our basis modulo p to one modulo p^n .

Inert primes: $2 \mod 3$

- Let p be a rational prime congruent to $2 \mod 3$.
- Then $\mathbb{Z}[\zeta]/(p^n)\cong \mathbb{Z}/_{p^n}[\zeta]$, so $\mathsf{Aut}(\mathbb{Z}[\zeta]/(p^n))\cong \mathsf{GL}_2(\mathbb{Z}/_{p^n})$.
- One isomorphism class on $\mathbb{Z}[\zeta]/(p^n)$; it is given by $\operatorname{Lin}(\mathbb{Z}/p^n[\zeta]) := \operatorname{Lin}((\mathbb{Z}/p^n)^2, T)$, where T is the companion matrix of $X^2 X + 1$.
- Proof Outline:
 - Suffices to show $\exists v \in (\mathbb{Z}/p^n)^2$ so that $(v \ vA)^\top \in \mathsf{GL}_2(\mathbb{Z}/p^n)$ (Prokip, 2005) (*).
 - Take the entries of A modulo p, and act on $(\mathbb{Z}/p)^2$. Because $X^2 X + 1$ does not split modulo p, (*) holds in the quotient.
 - \mathbb{Z}/p^n is a local ring, so we can use Nakayama's Lemma to lift our basi modulo p to one modulo p^n .

Inert primes: $2 \mod 3$

- Let p be a rational prime congruent to $2 \mod 3$.
- Then $\mathbb{Z}[\zeta]/(p^n)\cong \mathbb{Z}/_{p^n}[\zeta]$, so $\operatorname{Aut}(\mathbb{Z}[\zeta]/(p^n))\cong \operatorname{GL}_2(\mathbb{Z}/_{p^n})$.
- One isomorphism class on $\mathbb{Z}[\zeta]/(p^n)$; it is given by $\operatorname{Lin}(\mathbb{Z}/p^n[\zeta]) := \operatorname{Lin}((\mathbb{Z}/p^n)^2, T)$, where T is the companion matrix of $X^2 X + 1$.
- Proof Outline:
 - Suffices to show $\exists v \in (\mathbb{Z}/p^n)^2$ so that $(v \ vA)^\top \in \mathsf{GL}_2(\mathbb{Z}/p^n)$ (Prokip, 2005) (*).
 - Take the entries of A modulo p, and act on $(\mathbb{Z}/p)^2$. Because $X^2 X + 1$ does not split modulo p, (*) holds in the quotient.
 - \mathbb{Z}/p^n is a local ring, so we can use Nakayama's Lemma to lift our basis modulo p to one modulo p^n .

A direct product decomposition theorem

Theorem 4.5.6

Every ANR MTS is isomorphic to a direct product of quasigroups of the form $\operatorname{Lin}(\mathbb{Z}/p_1^n,a^{\pm 1})$ and $\operatorname{Lin}(\mathbb{Z}/p_2^n[\zeta])$ for $p_1\equiv 1\mod 3$ and $p_2\equiv 2\mod 3$.

Enumeration of ANR MTS

- Denote integer partitions via multisets (X, μ) .
- $lackbr{\blacksquare} P(n) = \text{number of partitions of } n$
- ${f P}_E(n)=$ number of partitions consisting of even parts.

Theorem 4.5.7

Let $p \neq 3$ be prime. Then, up to isomorphism, the number of distributive MTS of order p^n is given by

- $\sum \sum (\mu(r) + 1) \text{ whenever } p \equiv 1 \mod 3;$
-).) $P_E(n)$ whenever $p \equiv 2 \mod 3$.
- m a.) comes from the fact that $\binom{2+\mu(r)-1}{\mu(r)}=\mu(r)+1.$

Enumeration of ANR MTS

- Denote integer partitions via multisets (X, μ) .
- P(n) = number of partitions of n
- $ightharpoonup P_E(n) = ext{number of partitions consisting of even parts.}$

Theorem 4.5.7

Let $p \neq 3$ be prime. Then, up to isomorphism, the number of distributive MTS of order p^n is given by

- a.) $\sum_{(X,\mu)\vdash n} \sum_{r\in X} (\mu(r)+1)$ whenever $p\equiv 1\mod 3$;
- b.) $P_E(n)$ whenever $p \equiv 2 \mod 3$.
 - a.) comes from the fact that $\binom{2+\mu(r)-1}{\mu(r)} = \mu(r) + 1$.

Enumeration of ANR MTS

- Denote integer partitions via multisets (X, μ) .
- P(n) = number of partitions of n
- $lacksquare P_E(n) = \mathsf{number}$ of partitions consisting of even parts.

Theorem 4.5.7

Let $p \neq 3$ be prime. Then, up to isomorphism, the number of distributive MTS of order p^n is given by

- a.) $\sum_{(X,\mu)\vdash n} \sum_{r\in X} (\mu(r)+1)$ whenever $p\equiv 1\mod 3$;
- **b.)** $P_E(n)$ whenever $p \equiv 2 \mod 3$.
 - \blacksquare a.) comes from the fact that ${2+\mu(r)-1\choose \mu(r)}=\mu(r)+1.$

- $\mathbb{Z}[\zeta]/(1+\zeta)^{2k}\cong\mathbb{Z}/_{3k}[\zeta]$, so even powers work just like inert primes.
- $\hspace{-0.5cm} \text{However,} \\ \hspace{-0.5cm} \mathbb{Z}[\zeta]/(1+\zeta)^{2k+1} \cong \mathbb{Z}[X]/(X^2-X+1,3^kX,3^{k+1}) \cong_{\mathsf{Ab}} \mathbb{Z}/_{3^k} \oplus \mathbb{Z}/_{3^{k+1}}$
 - Leads to representation theory of mixed congruence classes
 - However, numerical evidence from the paper of Donovan et. al. seems to indicate that there is only one isomorphism class on each
 - If this is true, then the number of affine MTS of order 3^n is P(n)

- $\mathbb{Z}[\zeta]/(1+\zeta)^{2k}\cong\mathbb{Z}/_{3^k}[\zeta]$, so even powers work just like inert primes.
- $\begin{array}{c} \blacksquare \text{ However,} \\ \mathbb{Z}[\zeta]/(1+\zeta)^{2k+1} \cong \mathbb{Z}[X]/(X^2-X+1,3^kX,3^{k+1}) \cong_{\mathsf{Ab}} \mathbb{Z}/_{3^k} \oplus \mathbb{Z}/_{3^{k+1}}. \end{array}$
 - Leads to representation theory of mixed congruence classes.

If this is true, then the number of affine MTS of order 3° is P(

- $\mathbb{Z}[\zeta]/(1+\zeta)^{2k} \cong \mathbb{Z}/_{3^k}[\zeta]$, so even powers work just like inert primes.
- $\begin{array}{c} \blacksquare \text{ However,} \\ \mathbb{Z}[\zeta]/(1+\zeta)^{2k+1} \cong \mathbb{Z}[X]/(X^2-X+1,3^kX,3^{k+1}) \cong_{\mathsf{Ab}} \mathbb{Z}/_{3^k} \oplus \mathbb{Z}/_{3^{k+1}}. \end{array}$
 - Leads to representation theory of mixed congruence classes.
 - However, numerical evidence from the paper of Donovan et. al. seems to indicate that there is only one isomorphism class on each $\mathbb{Z}[\zeta]/(1+\zeta)^{2k+1}$.

- $\mathbb{Z}[\zeta]/(1+\zeta)^{2k} \cong \mathbb{Z}/_{3^k}[\zeta]$, so even powers work just like inert primes.
 - However, $\mathbb{Z}[\zeta]/(1+\zeta)^{2k+1}\cong \mathbb{Z}[X]/(X^2-X+1,3^kX,3^{k+1})\cong_{\mathsf{Ab}}\mathbb{Z}/_{3^k}\oplus \mathbb{Z}/_{3^{k+1}}.$
 - Leads to representation theory of mixed congruence classes.
 - However, numerical evidence from the paper of Donovan et. al. seems to indicate that there is only one isomorphism class on each $\mathbb{Z}[\zeta]/(1+\zeta)^{2k+1}$.
 - If this is true, then the number of affine MTS of order 3^n is P(n).

Lifting the ramified case

- Every matrix representation of ζ over $\mathbb{Z}/_3 \oplus \mathbb{Z}/_9$ and $\mathbb{Z}/_9 \oplus \mathbb{Z}/_{27}$ lifts to one in $\mathsf{SL}_2(\mathbb{Z})$.
- If this holds for all powers of 3, then, then the problem is solved
- I obtained these lifts through a greedy search, and it may be possible to show that such a search must terminate

4日 > 4間 > 4 目 > 4 目 > 目 り Q 〇

Lifting the ramified case

- Every matrix representation of ζ over $\mathbb{Z}/_3 \oplus \mathbb{Z}/_9$ and $\mathbb{Z}/_9 \oplus \mathbb{Z}/_{27}$ lifts to one in $\mathsf{SL}_2(\mathbb{Z})$.
- If this holds for all powers of 3, then, then the problem is solved.
- I obtained these lifts through a greedy search, and it may be possible to show that such a search must terminate

Lifting the ramified case

- Every matrix representation of ζ over $\mathbb{Z}/_3 \oplus \mathbb{Z}/_9$ and $\mathbb{Z}/_9 \oplus \mathbb{Z}/_{27}$ lifts to one in $\mathsf{SL}_2(\mathbb{Z})$.
- If this holds for all powers of 3, then, then the problem is solved.
- I obtained these lifts through a greedy search, and it may be possible to show that such a search must terminate.

Beyond set-theoretic triality

Beyond set-theoretic triality

Quasigroup Triality April 13, 2020

Quantum quasigroups

A K-module A, endowed with multiplication $\nabla:A\otimes A\to A$ and comultiplication $\Delta:A\to A\otimes A$ is a quantum quasigroup if the composite maps

and

are invertible.

What are some sufficient conditions for obtaining this configuration

Quantum quasigroups

A K-module A, endowed with multiplication $\nabla:A\otimes A\to A$ and comultiplication $\Delta:A\to A\otimes A$ is a quantum quasigroup if the composite maps

$$\mathsf{G} = (\Delta \otimes 1_A)(1_A \otimes \nabla)$$
 $\vartheta = (1_A \otimes \Delta)(\nabla \otimes 1_A)$

and

are invertible.

What are some sufficient conditions for obtaining this configuration?

The End

< ㅁ > < 圊 > < 돌 > < 돌 > < 일