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Abstract. A canonical/lognormal model for human demography is established, specifying
the net maternity function and the age distribution for mothers of new-borns using a single
macroscopic parameter vector of dimension five. The age distribution of mothers is canon-
ical, while the net maternity function normalizes to a lognormal density. Comparison of an
actual population with the model serves to identify anomalies in the population which may
be indicative of phase transitions or influences from levels outside the demographic. Track-
ing the time development of the parameter vector may be used to predict the future state of
a population, or to interpolate for data missing from the record. In accordance with classical
theoretical considerations of Backman, Prigogine, et al., it emerges that the logarithm of a
mother’s age is the most fundamental time variable for demographic purposes.

1. Introduction

One of the recurring difficulties of demographic analysis has been the complexity
of the data required to give an adequate specification of a particular population.
Typically, this complexity is not less than the order of the number of age groups
into which the population is classified. For example, the number of non-zero entries
in a projection matrix is about twice the number of age classes [10, p.41]. In other
words, something like a score of “microscopic” coefficients are required to describe
the state of the population. The current paper is intended to initiate a macroscopic
approach to demography, based on a canonical/lognormal model, specifying a given
population by a five-dimensional parameter vector from which detailed information
such as net maternity function values may be generated. The development of the
population over time may then be tracked kinetically merely by following the tra-
jectory of this five-dimensional vector. Under certain smoothness conditions with
a wide range of validity, one may interpolate for times at which the historical data
are incomplete, or readily predict the future development of the population.

It is important to note that no assumptions concerning Lotka stability are re-
quired by the canonical/lognormal model, in contrast with many of the previously
available demographic techniques. Indeed, one of the five parameters of the model is
the dimensionless perturbation which explicitly measures the deviation from Lotka
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stability. Thus Lotka stability is merely a special case of the canonical/lognormal
model, much as stationarity is a special case of Lotka stability.

From one point of view, the macroscopic approach may be regarded as an exer-
cise in data compression. From another, it mimics the thermodynamic concept of
an ideal gas, in which detailed information about the positions and momenta of the
1027 gas molecules in a large chamber may be summarized by the pressure, volume,
and temperature. Although the data compression to be afforded by the techniques
of the present paper is by no means comparable with that achieved by the ideal gas
concept — after all, human beings are much more complex than gas molecules —
the analogy is still useful in helping one appreciate what will and will not be done
here.

The first point concerns the distinction between intensive and extensive vari-
ables. Intensive variables are those, such as pressure and temperature, that do not
depend on the size of the population sample. Extensive variables, such as volume,
are those that do depend on the size of the sample. In the demographic context, the
current paper focuses on intensive variables such as net maternity function values,
not on extensive variables such as the total female population.

The second point concerns the distinction between model and reality. The ideal
gas is a simple model. Real gases, such as unsuperheated steam, do not behave
exactly like an ideal gas. In similar fashion, real populations will not behave exactly
as predicted by the simple models given in this paper. Sometimes, as for the 1985
Malaysian population described in Figure 1, the agreement will be close. At other
times, e.g. for the 1985 U.S. population described in Figure 3, there will be marked
discrepancies. These discrepancies are useful indicators of the presence of addi-
tional factors not built in to the model. The discrepancy between the behaviors of
an ideal gas and of unsuperheated steam is partly due to condensation (phase tran-
sition) of the latter. The discrepancy between the behavior of a model population
with the macroscopic parameters of the U.S. in 1985, and that of the actual popula-
tion, is due to peculiarities of the actual population, for example the deferment of
motherhood by women pursuing a career. Beyond the data compression aspect, one
of the prime applications of the current model is to locate special features of a given
population, features that may not be immediately apparent from the mass of raw
data with which one is initially confronted. From a complex systems perspective,
these features may be identified as influences on a population’s demographic level
exerted by other levels, such as the organismic level from below or the economic
level from above.

2. Plan of the paper

The present paper is concerned with macroscopic specification of two intensive
functions of age a (years) in a human female population: the net maternity func-
tion ϕ(a) and the probability density function q(a) for the age of the mother of a
randomly chosen new-born. There are five macroscopic parameters that determine
these functions: a constant R−1 (per annum) normalizing ϕ(a) into a density (4.5);
a Malthusian parameter r (per annum); a dimensionless parameter s measuring the
perturbation from Lotka stability; a logarithmic generation time t (years); and a
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dimensionless standard deviation u (4.11). In terms of these parameters, the net
maternity function has a lognormal density

ϕ(a) = R−1

u
√

2π
exp

{
− 1

2u2

(
log

a

t

)2}

[cf. (4.13)], while the probability density function q(a) is determined by (the nor-
malization

∫ ∞
0 q(a)da = 1 and) the proportionality

q(a) ∝ exp
{

− ra − 1 + s

2u2

(
log

a

t

)2}
.

The density q(a) is canonical. One may refer to the population model under study
as the canonical/lognormal model. Canonical distributions are discussed in Sec-
tion 3, using a continuous age variable for convenience. Fuller details, explicitly
using discrete age classes, are available in earlier papers [15] [16]. The lognormal
distribution for the net maternity function, and the resulting canonical distribution,
are presented in Section 4. For further details about lognormal distributions, includ-
ing various biological applications and potential generating mechanisms, a useful
reference is [5].

The latter half of the paper examines the validity of the canonical/lognormal
model, and discusses its use as a tool for the analysis of actual populations. The
discussion divides naturally into two aspects: demographic statics (Section 5) and
demographic kinetics (Section 6). Demographic statics is concerned with the anal-
ysis of a population at a particular moment. Here, the key question is the descriptive
power of the canonical/lognormal model. Generally, the fit is observed to be very
good, especially for populations not subject to marked stress. Indeed, significant
divergence of the actual functions from the models is a useful indicator of the pres-
ence of such stresses, e.g. the deferment of motherhood in the 1985 U.S. population.
A major feature of the model is the way it provides a basis for comparison entirely
within the static framework, not needing data values from other time points. For
example, comparison of the 1985 U.S. data with the model may replace comparison
of the 1985 data with their 1980 counterparts.

Demographic kinetics is concerned with the evolution of populations over time.
The canonical/lognormal model enables one to focus on the trajectory of the five-
dimensional vector (R−1, r, s, t, u) of parameters, much as the ideal gas model
enables one to study the behavior of a gas in terms of pressure, temperature, and
volume changes. Under normal circumstances (e.g. the absence of shock waves
in the ideal gas), the macroscopic variables change smoothly with time. One may
use this assumption of smoothness in the time evolution of the parameter vector
to predict the future state of a population. Section 6 presents an example of this,
examining the (peninsular) Malaysian population over the 1970–1985 time period.
As a test, the 1970–1980 data are used to predict the state in 1985. Comparison of
the prediction with the actual state shows very close agreement. Such predictions
are essentially extrapolations. In similar vein, one could use assumed smoothness
of parameter change to interpolate states into gaps in the sequence of available data.
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The paper concludes with a brief discussion of future research problems raised
by the present work. The two main issues are:

(1) Development of a demographic dynamics to govern the kinetics of the param-
eter vector (R−1, r, s, t, u);

(2) Finding an intrinsic biological foundation for the logarithmic time scale of the
net maternity function.

Problem (1) seems unapproachable at present, although it is hoped that long-term
tracking of certain well-documented populations may start to reveal some of the
forces involved. Problem (2) suggests some intriguing connections with classical
ideas of Backman [3] and Prigogine [13], ideas that have started to reappear in
recent work such as [1].

3. The canonical distribution

Consider the experiment of choosing a new-born female at random, and determin-
ing the age A of her mother. Suppose that the probability density function for this
random variable A is p(a), so that the probability of a random new-born’s mother
having age lying in the range t1 < A ≤ t2 is

∫ t2

t1

p(a)da. (3.1)

Since p(a) is a probability density function, it is normalized by

1 =
∫ ∞

0
p(a)da. (3.2)

Define the generation time

T =
∫ ∞

0
ap(a)da (3.3)

as the expected age of a random new-born’s mother. Define the (logarithmic) mater-
nity

M = −
∫ ∞

0
p(a) log ϕ(a)da (3.4)

as the expected value of the negated logarithm of the net maternity function ϕ(a)

[8, p.100]. Note that the quotient M/T is the reproductive potential [7]. Suppose
that the numerical values of the generation time and logarithmic maternity (or
generation time and reproductive potential) are determined, but that one has no
further information about the probability density function p(a). In this case, the
appropriate model for the density function p(a) is the canonical density function
q(a), namely the (unique) density function that maximizes the entropy [14, §20]
or expected value

H = −
∫ ∞

0
p(a) log p(a)da (3.5)
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of the negated logarithm of the density function, subject to the constraints (3.2),
(3.3), and (3.4). Introduce a Lagrange multiplier α corresponding to the constraint
(3.2). Introduce a Lagrange multiplier r corresponding to the generation time con-
straint (3.3). The quantity r is known as the Malthusian parameter; its units are
inverse time (e.g. per year). Introduce a Lagrange multiplier (1 + s) corresponding
to the maternity constraint (3.4). The dimensionless quantity s is known as the
perturbation. The Euler equation for the constrained maximization problem is

− log p(a) − 1 − α − ra + (1 + s) log ϕ(a) = 0. (3.6)

Thus its solution, the canonical density function q(a), is given by the equation

log q(a) = − log Z(r, s) − ra + (1 + s) log ϕ(a) (3.7)

as

q(a) = Z(r, s)−1e−raϕ(a)1+s . (3.8)

Here the partition function or Zustandsumme

Z(r, s) =
∫ ∞

0
e−raϕ(a)1+sda (3.9)

is given by

log Z(r, s) = 1 + α (3.10)

in terms of the Lagrange multiplier α. Denote the Lotka (stable) growth rate by
r1 [10, p.41]. The Lotka characteristic equation [8, §6.5] [9, §5.1] [11, p.65] then
takes the form

Z(r1, 0) = 1 (3.11)

according to (3.9). From (3.8), it follows that the Lotka-stable density

q0(a) = e−r1aϕ(a) (3.12)

[6, (2.8)] is the special case of the canonical density obtained by setting the pertur-
bation s to be zero and the Malthusian parameter r to be equal to the Lotka growth
rate r1. (This state of affairs may be summarized by referring to Lotka stability as
the unperturbed case r = r1, s = 0 of canonicity, much as stationarity is the special
case of Lotka stability corresponding to r1 = 0.) Now take the negated expected
value of each side of (3.7) with respect to the canonical probability distribution.
One obtains

H = log Z(r, s) + rT + (1 + s)M. (3.13)

This equation holds exactly for the particular r and s values determined by the Lag-
range multipliers. The numerical values of these parameters are small (of the order
of 1/T ). Now although log Z(r, s) is a strictly convex function (cf. [2, Cor. 2.2]),
its graph differs little from its tangent planes in the demographically significant
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region of small r and s values. To within demographic accuracy, one may thus
assume that one has a linear function

log Z(r, s) = (H − M) − rT − sM (3.14)

for small r and s, namely O(1/T ). Setting r = r1 and s = 0 into (3.14), and using
(3.11), one thus extends the relationship

r1 = H − M

T
(3.15)

from the Lotka-stable case [6, (2.16)] to the general canonical case. Note that (3.15)
yields r1 more directly than does solution of the characteristic equation.

4. The lognormal distribution

Setting s = 0 into equation (3.9), one obtains

Z(r, 0) =
∞∑

k=0

(−r)k

k!
Rk (4.1)

with

Rk =
∫ ∞

0
akϕ(a)da (4.2)

for natural numbers k [8, §6.1] [9, §5.2]. In particular, one has the net reproduction
rate

R0 = Z(0, 0) (4.3)

[8, p.102]. Although the net maternity function ϕ(a) is non-negative, it does not
directly yield a probability density function on the set of ages unless stationarity
holds. In this latter case r1 = 0, and then (3.11) and (4.3) together imply R0 = 1.
In the general case one might renormalize, considering

ϕ(a)/R0 (4.4)

as a density [9, §5.2]. Attempts have been made to fit (4.4) with normal and other
readily handled density functions on the set of ages [8, Ch. 6]. However, as Keyfitz
observes [8, p. 168], the attempts have not generally been satisfactory.

The essence of the current approach is to consider an appropriate renormal-
ization of the net maternity function as a probability density function for the log-
arithm of the age, not for the age itself. The renormalization constant must be∫ a=∞
a=0 ϕ(a)d(log a) or

R−1 =
∫ ∞

0
a−1ϕ(a)da (4.5)
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[extending the notation (4.2)]. One then obtains

ϕ(a)/R−1 (4.6)

as a probability density function. Under this density, the probability for the age
random variable X to lie in a range t1 < X ≤ t2 is given as

∫ a=t2

a=t1

ϕ(a)da

R−1a
. (4.7)

One may also set Y = log X, y = log a and use the equivalent expression
∫ y=log t2

y=log t1

R−1
−1ϕ(ey)dy. (4.8)

The expected value of the logarithm of the age under the density (4.6) will be written
in the form

log t =
∫ ∞

0

ϕ(a) log a

R−1a
da (4.9)

for a characteristic age t called the logarithmic generation time. Generally, one has

t < T . (4.10)

(The mnemonic “little t less than big T ” is sometimes helpful.) The variance of the
logarithm of the age under the density (3.6) will be written in the form

u2 =
∫ ∞

0

ϕ(a)[log(a/t)]2

R−1a
da (4.11)

with a non-negative, dimensionless parameter u called the (standard) deviation.
Thus the random variable Y − log t has mean 0 and standard deviation u. Assum-
ing that one has no further information about the distribution of Y , one concludes
that Y = log X is normally distributed with mean log t and variance u2 [14, p.
629]. Equivalently, the age random variable X has the two-parameter lognormal
distribution

�(log t, u). (4.12)

In other words [5, p.2], the net maternity function is given as

ϕ(a) = R−1

u
√

2π
exp

{
− 1

2u2

(
log

a

t

)2}
(4.13)

for a > 0. Note its dependence on the three parameters: the renormalization con-
stant R−1, the logarithmic generation time t , and the standard deviation u. Making
further use of the Malthusian parameter r and perturbation s, one may insert (4.13)
into (3.8) to obtain

q(a) = exp
{

− ra − 1 + s

2u2

(
log

a

t

)2}/ ∫ ∞

0
exp

{
− ra − 1 + s

2u2

(
log

a

t

)2}
da

(4.14)
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or

q(a) = Z(r, s)−1
( R−1

u
√

2π

)1+s

exp
{

− ra − 1 + s

2u2

(
log

a

t

)2}
(4.15)

with

Z(r, s) =
( R−1

u
√

2π

)1+s
∫ ∞

0
exp

{
− ra − 1 + s

2u2

(
log

a

t

)2}
da. (4.16)

Together, (4.13) and (4.14) specify ϕ(a) and q(a) entirely in terms of the vector

(R−1, r, s, t, u) (4.17)

of parameters. More succinctly, one may describe the shapes of ϕ(a) and q(a) by
the proportionalities

ϕ(a) ∝ exp
{

− 1

2u2

(
log

a

t

)2}
(4.18)

and

q(a) ∝ exp
{

− ra − 1 + s

2u2

(
log

a

t

)2}
. (4.19)

The canonical/lognormal model may then be summarized by (4.5), (4.18) and
(4.19).

5. Demographic statics

This section illustrates the application of the canonical/lognormal model to what
one might call “demographic statics” — the analysis of a certain population at one
given time. In [16, §5], the canonical distribution was used for such an analysis
of the population of Malaysian females in 1970. The canonical distribution (3.8)
overestimated the births to mothers in the 25 to 29 year old age class by an order of
10%. This was the cohort of mothers born under the occupation of (then) Malaya
during World War II. Thus the discrepancy between the true record of births and
that estimated by the canonical model pointed to an anomaly in the population due
to historical effects not built in to the model.

The first of the current analyses takes the same population 15 years later: (pen-
insular) Malaysian females in 1985. The data are presented in Figure 1, based on
[10, pp.384-5]. The graphs displayed are piecewise-linear rather than smooth, due
to the recording of the data in 5 year classes. The upper panel graphs are nor-
malized to display total births (of both sexes) for the various 5-year age classes,
corresponding to the “births by age of mother” tabulations in [10]. The lower panel
graphs are normalized to display the per quinquennium net maternity function, in
accordance with the tabulations in [10]. The solid graphs, with data points marked
by plus signs, give the true births by age (class) and the true net maternity func-
tion. For example, the plus signs over age 27.5 years record the actual number of
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Fig. 1. Malaysia 1985.

13.747 × 104 births for mothers in the 25–29 year age class, and the corresponding
net maternity function value of 0.5620 per quinquennium. On the graph of births,
the canonical distribution (3.8) using the true net maternity function is indicated by
broken lines, with crosses marking data points. The fit is so exact that the discrep-
ancy between the true and canonical graphs is barely discernible. The agreement
suggests that the population has returned to equilibrium after the disturbance of
World War II. Since the perturbation value s at 0.0733 is significantly different
from zero, however, one can not characterize this equilibrium as Lotka stability.
The dotted graph in the lower panel, with circles marking data points, displays the
net maternity function estimate given by the lognormal model (4.13). Finally, the
dotted graph in the upper panel gives the estimated births by age using the fully
parametrized canonical distribution (4.14). The fit to the net maternity function is
quite good, being slightly too peaked. These mild distortions are reflected in the fit
of the parametrized canonical distribution.

The second figure (Figure 2) displays the corresponding graphs for Cypriot
females in 1980, based on [10, pp.358-9]. Possibly due to the relative smallness of
the sampled population, or to unreliability of the data because of the partition of
the island, the true births by mother’s age and the net maternity function have the
curious feature of not being unimodular: there are 2 births recorded for the 45–49
year age class, but 4 for the 50–54 year olds. Although not apparent from the figure,
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Fig. 2. Cyprus 1980.

the canonical model (3.8) using the true net maternity function also displays this
lack of unimodularity, estimating 1.3 births to the 45–49 year olds and 2.1 to the
50–54 year olds. These anomalies are smoothed out in the parametrized curves,
again shown dotted in each panel. As before, the fits are quite good. This time,
however, the parametrized canonical distribution for the births by mother’s age is
not as peaked as the true curve.

The final figure of the section (Figure 3) displays the corresponding data for
United States females in 1985, based on [10, pp. 348-9]. The (broken) canonical
graph using true net maternity function values gives a very close tracking of the
true births by mother’s age. Unlike the case of 1970 Malaysia, this graph does not
indicate any anomalies. However, the (dotted) graphs of parameter-based estimates
show two distinct discrepancies: a dearth of actual births in the 20–24 year age
class, balanced by an excess of actual births in the 30–34 year age class. These dis-
crepancies appear to indicate a significant number of women postponing childbirth
for up to ten years, presumably in order to concentrate on a career. Note that the
current techniques are indicating these discrepancies on a purely static basis, taking
only the data for 1985. Against this background, it is interesting to observe that the
graphs of “Changes in Fertility 1950–1985” of [10, p.349] present a similar picture.
Comparing the true net maternity functions for 1980 and 1985, that for 1985 is low
for women in their early twenties, and high for women in their early thirties.
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Fig. 3. U.S.A. 1985.

6. Demographic kinetics

The previous section showed how the canonical/lognormal model may be used
for a static analysis of a population, working with the data taken from a single
point in time. Static canonical/lognormal analysis of U.S. females in 1985 pro-
vided information (on the postponement of births by women in their twenties) that
was otherwise apparent only by comparison with the state of the population at
other times. This section shows how the canonical/lognormal model may be used
in “demographic kinetics” – the study of the development of a population over
time. In essence, the canonical/lognormal model reduces complete knowledge of
the net maternity function and age distribution of mothers to knowledge of the five
parameters displayed in the vector (4.17). Under normal circumstances (e.g. in the
absence of “phase transitions”), one may expect the vector (4.17) of parameters
to evolve smoothly over time. This assumption becomes the basis of a method for
predicting the future development of a population. The method will be illustrated by
the example of the (peninsular) Malaysian female population over the 1970–1985
time period [10, pp.380-5]. The first four rows of Table 1 display the true values
of the components of (4.17) for five-year intervals of the period. Table 2 displays
the corresponding true values of various dependent quantities. [Note that the Lotka
growth rate r1 is computed using (3.15).] Now suppose that in 1980 one wished
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Table 1. Independent parameters for Malaysian females.

R−1 (/yr) r (/yr) s t (yrs) u

True 1970 0.0781 0.0369 −0.0718 27.09 0.2361
True 1975 0.0602 0.0415 −0.0225 27.04 0.2331
True 1980 0.0642 0.0400 0.0256 27.24 0.2220

True 1985 0.0642 0.0343 0.0733 27.81 0.2150

Est. 1985 0.0630 0.0322 0.0725 27.69 0.2022

Error −2% −6% −1% −1% −6%

Table 2. Dependent quantities for Malaysian females.

log Z r1 (/yr) M T (yrs) H

True 1970 −0.2164 0.0268 0.9166 27.83 1.6622
True 1975 −0.5069 0.0223 1.0062 27.55 1.6216
True 1980 −0.5859 0.0198 1.0193 27.75 1.5687

True 1985 −0.4710 0.0203 0.9719 28.48 1.5498

Est. 1985 −0.4245 0.0196 0.9283 28.30 1.4819

Error 10% −3% −4% −1% −4%

to predict the condition of the population in 1985. For each of the five parameters
of vector (4.17), one would know their three values at the respective times 1970,
1975, 1980. Fitting a quadratic polynomial function of time to these three values,
one could then evaluate the polynomial at 1985 to obtain a prediction of the true
parameter value in 1985. These five estimates of the 1985 values are displayed in
the fifth row of Table 1. The errors range up to 6%.

The estimated parameter values may then be used in formulas (4.13) and (4.14)
to give predictions for the 1985 net maternity function and distribution of births by
age of mother. The predictions are quite accurate, especially for the distribution of
births by age of mother. From these predicted functions, one may derive predictions
for the various dependent quantities. These predictions are recorded in the fifth row
of Table 2. For example, the error in the predicted Lotka growth rate is −3%. (A
direct quadratic fit to the r1 values gives a 5% underestimate.)

7. Discussion

The work presented above raises two open problems that may serve as the focus
for future research: biological modelling of the lognormality of the net maternity
function, and development of a “demographic dynamics” to accompany the “demo-
graphic kinetics” of Section 6. Taking the latter problem first, recall that the kinetics
merely traces the time development of the fundamental parameter vector (4.17).
Dynamics would identify forces driving this development, and quantify their effect
on the parameters. The problem may be hard to solve, because of the influence of
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factors from outside the demographic level. These factors may come from lower
levels such as that of the organism, e.g. through diseases, or from higher levels
such as the economy, e.g. through the development of pension schemes that reduce
the incentive to raise a large family. Some attempts directed at developing demo-
graphic dynamics have been undertaken by Demetrius, for example (see [7] for
a summary), taking the population entropy as the basic parameter. Although this
work gives an interesting analysis of the convergence to the stable age distribution
in the Lotka model (cf. [17]), it does not appear to be applicable in more general
contexts. Consider the 1970–1985 Malaysian population as detailed in Table 2.
Note that M and r1 are positive throughout. On the other hand, the quotient H/T

(cf. [7, [9]]) decreases steadily: its four values in time order are 0.0597, 0.0589,
0.0565, 0.0544. This contradicts the prediction of [7, Table 1] that positivity of r1
and M/T (negativity of � = −M/T as in [7, [9]]) should imply an increase of the
normalized entropy H/T . Of course, the Malaysian population is far from stability,
since r differs from r1 throughout, and s differs from 0 except for some point in
1978. The methodology of the current paper suggests that the population entropy
is best treated as a dependent variable, the components of (4.17) being the basic
parameters.

The lognormality of the net maternity function should certainly be the subject
of further investigation. The derivation in Section 3 proceeded from the reasonable
epistemological assumption that the only information one had was the mean and
variance of the logarithm of the age. It would be interesting to obtain an intrinsic
biological model for this distribution. There are two indications that the fundamen-
tal variable should be the logarithm of the age, rather than the age itself. The first is
that the logarithm of the age functions as an “organic time” in Backman’s sense [3,
(6)] [13, XIII§3.3] or a “thermodynamic time” in Prigogine’s sense [13, (13.21)],
cf. [4, p.231]. Indeed, (4.8) with (4.13) may be viewed as an instance of Backman’s
general growth formula [3, (5)]. (Strictly speaking, this formula applies to a par-
ticular organism. For current purposes, one could take the “organism” here to be
the cohort of mothers born in a certain time period, together with their daughters
considered as “inert tissue” of the organism in the sense of [12, §2.3].) The sec-
ond indication comes from analyzing dimensions. The net maternity function ϕ(a)

has inverse time as its dimension. If one wishes to normalize it to a dimensionless
function of age, one should use ϕ(a)/R−1 rather than ϕ(a)/R0, thereby making
the logarithm of the age into the basic variable.
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