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Abstract. Alternative algebras known as comtrans algebras have been used

in the coordinatization of web structures, and in the formulation of quantum

mechanics. Time reversal in quantum mechanics corresponds to transposi-

tion of comtrans algebras. The current paper presents an alternative axi-

omatization of comtrans algebras, namely as tercom algebras, that simplifies

the description of transposition. A new class of simple comtrans or tercom al-

gebras, corresponding to simple alternative Akivis algebras, is then obtained.

1. Introduction

Analogues of the classical correspondence between Lie algebras and Lie gro-

ups have recently been developed in a number of different contexts. Following

the work of the 1960’s connecting Mal’cev algebras and Moufang loops, Akivis [1],

Hofmann–Strambach [2] and others studied the relationship between (what are now

called) Akivis algebras and smooth binary loops. Later [6], ternary multilinear al-

gebras known as comtrans algebras, in company with Akivis algebras, were shown

to correspond to smooth n-loops. The smooth loops and n-loops arise naturally

in differential geometry as coordinatizations of web structures. The multilinear al-

gebras in the tangent spaces display the common feature of alternativity to varying

extents.

Beyond their differential-geometric roots, comtrans algebras have been app-

lied to special relativity and quantum mechanics [7]. In particular, time reversal

in quantum mechanics is described by the transposition relationship between cer-

tain comtrans algebras. Now although the axiomatization of comtrans algebras is

very succinct, it does not lend itself nicely to the formulation of the transposition
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relationship. A primary aim of the current paper is to present an alternative axio-

matization in terms of so called ternary commutator or “tercom” algebras, having

a left alternative left commutator and a right alternative right commutator. In this

axiomatization, transposition just becomes an interchange of left and right.

Comtrans and tercom algebras are examples of a general class of algebras

defined in terms of a pair of permutations of the arguments of multilinear ope-

rations. The identities satisfied by these algebras – generalized alternativity and

Jacobi identities – correspond to the cyclic groups generated by these permutations

and their quotient. This group-theoretical approach to the specification of multi-

linear algebras is discussed in the first section. The second section addresses the

transposition of tercom algebras, while the brief third section defines ideals, the

abelian property and simplicity of tercom algebra. The final section investigates

connections between Akivis algebras, Mal’cev algebras and tercom or comtrans al-

gebras. The main theorem of that section shows how simple Mal’cev algebras, and

more generally simple Akivis algebras, correspond to simple tercom or comtrans

algebras. The theorem is part of the continuing programme (cf. [3], [4], [5]) of

classifying simple comtrans algebras.

2. Comtrans algebras and tercom algebras

A comtrans algebra [6] is a (unital) module E over a commutative ring R

(with identity element), together with two trilinear operations, the commutator

λ:E×E×E → E, and the translator η:E×E×E → E, such that the commutator

is left alternative:

(1) λ(x, y, z) + λ(y, x, z) = 0,

the translator satisfies the Jacobi identity for comtrans algebras:

(2) η(x, y, z) + η(y, z, x) + η(z, x, y) = 0,

and λ and η together satisfy the comtrans identity:

(3) λ(x, y, z) + λ(z, y, x) = η(x, y, z) + η(z, y, x).

A different axiomatization leads to ternary commutator algebras or tercom

algebras. Here we also have two trilinear operations, called the left commutator

λ : E × E × E → E, and the right commutator ρ:E × E × E → E. Again, the left

commutator is left alternative:

(4) λ(x, y, z) + λ(y, x, z) = 0,
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the right commutator is right alternative:

(5) ρ(x, y, z) + ρ(x, z, y) = 0,

and the Jacobi identity for tercom algebras holds:

(6) λ(x, y, z) + λ(y, z, x) + λ(z, x, y) = ρ(x, y, z) + ρ(y, z, x) + ρ(z, x, y).

Both kinds of algebras are (term) equivalent in the sense of universal algebra:

if (E, λ, η) is a comtrans algebra, then the definition

(7) ρ(x, y, z) = (η − λ)(y, x, z)

yields a tercom algebra (E, λ, ρ). Conversely, given a tercom algebra (E, λ, ρ), one

obtains a comtrans algebra (E, λ, η) by setting

(8) η(x, y, z) = (ρ − λ)(y, x, z).

The sets of identities (1)–(3) and (4)–(6) can be generalized in the following

way: let n be a positive integer, and let M be the set of all n-linear operations on

E. Then the symmetric group Sym(n) (as the group of bijections of {1, . . . , n})

operates on M via

(9) gϕ:En → E; x 7→ ϕ(x ◦ g)

for ϕ ∈ M, g ∈ Sym(n); here we interpret En to be the set of all maps from

{1, . . . , n} to E. For x1, . . . , xn ∈ E, we have in particular (gϕ)(x1, . . . , xn) =

ϕ(xg(1), . . . , xg(n)). The general form of the identities is then

Σ〈g〉α = 0(10)

Σ〈h〉β = 0(11)

Σ〈gh−1〉α = Σ〈gh−1〉β(12)

with α, β ∈ M and g, h ∈ Sym(n). These identities describe a comtrans algebra

with λ = α and η = β if we set n = 3, g = (1 2), and h = (1 2 3), which implies

gh−1 = (1 3). For a tercom algebra with λ = α and ρ = β we set similarly n = 3,

g = (1 2), and h = (2 3) (hence gh−1 = (1 2 3)). Note that both {(1 2), (1 2 3)}

and {(1 2), (2 3)} are minimal generating sets for Sym(3).
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Proposition. For every n-linear map µ : En → E, the maps α := µ − gµ and

β := µ − hµ satisfy (10)–(12).

Proof.

Σ〈g〉α = Σ〈g〉µ − Σ 〈g〉g
︸︷︷︸

=〈g〉

µ = 0,

Σ〈gh−1〉β = Σ〈gh−1〉µ − Σ〈gh−1〉hµ = Σ〈gh−1〉µ − Σ〈gh−1〉gh−1hµ = Σ〈gh−1〉α.

The proposition describes a “standard construction” of a comtrans or tercom

algebra for any given, “genuine” trilinear multiplication µ:E × E × E → E. In [6]

it is shown that in fact every comtrans or tercom algebra is the result of such a

standard construction.

3. Transposed tercom algebras

The concept of the transpose (E, λ, η)τ of a comtrans algebra (E, λ, η) was

introduced in [4] and has important mathematical and physical applications [7].

The transpose is defined by

λτ = (1 3)λ + (1 2 3)η,(13)

ητ = −(2 3)η,(14)

using the language of the group action (9). We have λττ = λ and ηττ = η, hence

the transpose is (term) equivalent to the genuine algebra.

A natural way to extend transposition to tercom algebras is as follows:

• Transform any given tercom algebra to its corresponding comtrans algebra

using equation (8).

• Transpose the obtained comtrans algebra with equations (13) and (14).

• Go back to tercom algebras via (7).

After a short computation, one finds the transpose (E, λ, ρ)τ of a tercom algebra

(E, λ, ρ) to be given by

λτ = (1 3)ρ,(15)

ρτ = (1 3)λ.(16)
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Since this operation merely interchanges the left and right commutators and re-

verses the order of their arguments, it is easier to handle than equations (13) and

(14).

4. Ideals

There are several equivalent ways of defining an ideal of a tercom algebra.

The most basic one describes an ideal J of a tercom algebra E as an R-submodule

of E such that for all x, y, z ∈ E the implication

(17) {x, y, z} ∩ J 6= ∅ ⇒ λ(x, y, z), ρ(x, y, z) ∈ J

holds. Ideals can also be characterized as the kernels of tercom algebra homomorp-

hisms [4]. A tercom algebra is said to be abelian if both the left and the right

commutator are identically zero. A nonabelian tercom algebra E is simple if it has

no proper nontrivial ideals.

5. Tercom algebras and Akivis algebras

An Akivis algebra [2] (formerly called a W -algebra [1]) is an R-module E

equipped with an anticommutative bilinear product [·, ·]:E × E → E (called the

commutator) and a trilinear map α:E ×E ×E → E (the associator of the algebra),

such that the Jacobi identity for Akivis algebras or Akivis identity

(18)

[[x, y], z] + [[y, z], x] + [[z, x], y] = α(x, y, z) − α(x, z, y)+

+ α(y, z, x) − α(y, x, z)+

+ α(z, x, y) − α(z, y, x)

is satisfied for all x, y, z ∈ E. This is a more general equation than the one for Lie

algebras (where we have α = 0).

If E × E → E; (x, y) 7→ xy is a bilinear (not necessarily associative) product

on E, then the standard construction of a Lie algebra may be extended to Akivis

algebras by setting

[x, y] = xy − yx,(19)

α(x, y, z) = (xy)z − x(yz).(20)

Ideals of Akivis algebras are defined much as in Section 4. An Akivis algebra is

abelian if both its commutator and associator are identically zero, and a nonabelian

Akivis algebra with no proper nontrivial ideals is said to be simple.
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An Akivis algebra is called alternative (in [2]) if tα = −α for all transpositions

t ∈ Sym(3). In this case the Jacobi identity collapses to

(21) [[x, y], z] + [[y, z], x] + [[z, x], y] = 6α(x, y, z).

Thus the associator is uniquely determined by the commutator if 6 is invertible in

the underlying ring R. Note that every Lie algebra is also an alternative Akivis

algebra, since then we have α = 0. A Mal’cev algebra is an R-module E equipped

with an anticommutative bilinear product [·, ·] satisfying the identity

(22) [[x, y], [x, z]] = [[[x, y], z], x] + [[[y, z], x], x] + [[[z, x], x], y].

If 6 is invertible in R, then one may use (21) to define a trilinear map α:E×E×E →

E such that (E, [·, ·], α) is an alternative Akivis algebra (cf. [1]).

Every Akivis algebra furnishes a tercom algebra whose left and right commu-

tator are given by

λ(x, y, z) = [[x, y], z],(23)

ρ(x, y, z) = α(x, y, z) − α(x, z, y).(24)

The verification of equations (4)–(6) is straightforward.

Shen and Smith proved [4] that simplicity of a Lie algebra is equivalent to

simplicity of its associated comtrans or tercom algebras. Using equation (21), the

proof may be extended to Mal’cev algebras and more general alternative Akivis

algebras over rings where 6 is a unit:

Theorem.

(i) Each ideal of an Akivis algebra is also an ideal of its associated tercom algebra.

(ii) An alternative Akivis algebra (E, [·, ·], α) over a ring R with 6 ∈ R× is simple

if and only if its associated tercom algebra is simple.

Proof. (i) trivial.

(ii) “if”: Implied by (i).

“only if”: Let (E, [·, ·], α) be a simple alternative Akivis algebra, and let

(E, λ, ρ) be the associated tercom algebra. Then by (21),

E′ =

{
k∑

i=1

[xi, yi] : k ∈ N0, x1, . . . , xk, y1, . . . , yk ∈ E

}
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is an ideal of the Akivis algebra. Since the Akivis algebra is nonabelian, we

have E′ 6= 0, hence E′ = E. Let x, y ∈ E such that [x, y] 6= 0, and let

z1, . . . , zk, w1, . . . , wk ∈ E such that x =
∑k

i=1[zi, wi]. Then
∑k

i=1 λ(zi, wi, y) =
∑k

i=1[[zi, wi], y] = [x, y] 6= 0. Therefore λ 6= 0, and the tercom algebra is also

nonabelian.

Now let J ⊆ E be a tercom ideal of E, and let j ∈ J , x ∈ E. Again let

z1, . . . , zk, w1, . . ., wk ∈ E such that x =
∑k

i=1[zi, wi]. Then

[x, j] =

k∑

i=1

[[zi, wi], j] =

k∑

i=1

λ(zi, wi, j) ∈ J.

By (21), the associator α is a linear combination of commutator terms, hence

α(x, y, j), α(x, j, y), α(j, x, y) ∈ J for all x, y ∈ E, j ∈ J . This shows that J is an

Akivis ideal of E, whence J = 0 or J = E. Therefore, E is also simple as a tercom

algebra.
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