(’j“%) vy )
TRI-RESTRICTED NUMBERS AND POWERS OF
PERMUTATION REPRESENTATIONS

JI YOUNG CHOI AND JONATHAN D.H. SMITH

ABSTRACT. Let G be a transitive permutation group on a set Q.
The orbit decompositions of the actions of G on the sets of ordered
n-tuples with elements repeated at most three times are studied. The
decompositions involve Stirling numbers and a new class of related
numbers, the so-called tri-restricted numbers. The paper presents
exponential generating functions for the numbers of orbits, and ex-
amines relationships between various powers of the G-set involving
Stirling numbers, the tri-restricted numbers, and the coefficients of
Bessel polynomials.

1. INTRODUCTION

Let G be a finite group. A G-set (Q,G) or permutation representation
of the group G consists of a set (), together with a (right) action of G on

@ via a homomorphism

(1.1) G- Q5 g (g qg)

from G into the group Q! of all permutations of the set Q. A G-set (@,G)
may be construed as an algebra of unary operations on the set Q. For a

positive integer n, the direct power (Q,G)" of this algebra is the G-set Q™

with diagonal action

(1.2) 9: (-1 qn) (019, -+, qn9)
of the elements g of G.

The subset Q"] of Q™ consisting of all n-tuples of distinct elements of
@, equipped with the restriction of the diagonal action of G, is called the
n-th irredundant power of the G-set (Q,G), and denoted by (Q, G)I*. The

subset QU] of Q™ consisting of all n-tuples in which no element is repeated
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more than once, equipped with the restriction of the diagonal action of G,
is called the n-th bi-restricted power of the G-set (@), G), and denoted by
(Q, G,

The exponential generating functions for the numbers of orbits in the
various direct powers, irredundant powers and bi-restricted powers are re-
spectively

Zet“(g) — z (1+¢)"9 and — Z <1+t+ )”(9)
IGI IGI oy Gl &% ’
where 7r(g) is the number of points of @ fixed by an element g of G (5.1(7],
Th.6.4 & Th.7.7{3]). The two latter generating functions may be consid-
ered as drastic truncations of the exponential generating function for the
numbers of orbits in the direct power G—sets, since

1 t"() t3 ”(g)
(1.4) —G—Ze 9 Z 14t+ 2 +§... .
Gl =

gEG
In this paper, we consider a slightly less drastic truncation,

t2 t m(g)
(1+t+ +3|) ,

and define an appropriate G-subset of (Q",G) so that (1.5) become the

(1.5) el G!

geqG

exponential generating function for the number of orbits in it. The numbers
T (n, k) related to (1.5), the so-called tri-restricted numbers of the first kind,
are defined in Definition 5.1 and investigated in Section 5.

The G-subset QU of Q™ consisting of all n-tuples in which no el-
ement appears more than three times is called the tri-restricted power
G-set (Q,G)Nl, Then orbit decompositions of the tri-restricted pow-
ers (Q, [ are related to the orbit decompositions of the irredundant
powers (@, G)[™ via the tri-restricted numbers of the first kind. The tri-
restricted powers are also related to the other powers, the direct powers
and the bi-restricted powers, via Stirling numbers and the coefficients in

Bessel polynomials.
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The tri-restricted number of the second kind Ty(n,k) is defined to be
the (n, k)-entry of the inverse of the matrix whose (m, J)-entry for each
m, j is the tri-restricted number of the first kind T} (m,j). This provides
an inverse relation between the tri-restricted powers and the irredundant
powers. Theorem 5.12 presents (1.5) as the exponential generating function
for the numbers of orbits in the tri-restricted power G-sets.

Introductory sections briefly cover Stirling numbers and Bessel polynb—
mials (Section 2), the duality between direct powers and irredundant powers

(Section 3), and the bi-restricted powers (Section 4).

2. STIRLING NUMBERS AND BESSEL NUMBERS

For each positive integer n, the product X (X —1)(X —2)...(X —n+ 1)
in the integral polynomial ring Z[X] over an indeterminate X is denoted
by [X],. Since {X” | n € N} and {[X], | n € N} are free generating
sets for Z[X] as a Z-module, each can be uniquely expressed as a linear

combination of the others.

Definition 2.1. The Stirling numbers of the first kind S, (n,k) and the
Stirling numbers of the second kind Sy(n, k) are given by

(2.1) X" = ng(n,k)[X]k and X]n = Zn:Sl(n, KXk O
k=0 k=0

Proposition 2.2. (Cf. 3.14 [1].) The Stirling number of the second kind
Sa(n, k) is the number of partitions of an n-set into exactly k nonempty

subsets. O

For each natural number n, the Bessel polynomial yn(x) is defined to be

the (unique) polynomial of degree n with unit constant term

22) Z (nn—+ k')I::' ( )



which satisfies the differential equation 223" +(2z+2)y' = n(n+1)y [2, 4, 6].
Then for each positive integer n, the n-th Bessel polynomial may be written

in the form
(2.3) Pu(z) =Y B(n,k)z"*
k=0

where the Bessel number B(n, k) is given by

(2n — k)!
2=k (k)(n — k)

(24) B(n,k)= if n<k then 0 else

Proposition 2.3. The Bessel numbers satisfy the recursion
(25) Bnk)=2n—-k+1)-B(n-1,k)+Bn-1L,k-1)

forn > k. g

The combinatorial significance of the Bessel numbers is given by the

following.

Theorem 2.4. (Th.7.1 [3]) For an indeterminate X, let

f() = (1+t+t22,)x.

Then
n
(2.6) F™(0) =" B(k, 2k ~ n)[ X1k,
k=1
where f(")(0) is the n-th derivative of f with respect to ¢ at ¢t = 0. O

Corollary 2.5. (Co.7.2 [3]) For any positive integers n and k, the Bessel
number B(n, k) is the number of partitions of a (2n—k)-set of type 1¥27—*30
40...n0. a

3. DIRECT POWERS AND IRREDUNDANT POWERS

For a finite group G, let G be the variety of G-sets, construed as a
category with homomorphlsms (G-equivariant maps) as morphisms. For

an object @ of G, let [Q] denote the isomorphism class of @ in G. Let
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AT (G) be the set of isomorphism classes of finite G-sets. This set becomes
a commutative, unital semiring (A*(G),+,,0,1) under [P] + [Q] = [P +
Q), [P]-[Q] =[P xQ), 0=¢g], and 1 = [1]. It embeds canonically into a
commutative ring, the integral Burnside algebra of the group G (§1.2 [8]).
For each positive integer n, the irredundant power G-set QI is defined
to be the complement in the direct power @™ of the subset consisting of all
n-tuples comprising at most n — 1 distinct elements of @ (cf. II.1.10 [5]).
The following proposition shows that the irredundant power G-sets (Q, G)!
are dual to the direct power G-sets (@, G)" via the Stirling numbers of the

first and second kinds.

Proposition 3.1. (Prop.5.1 [3])

n

(3.1) Q] =3"51(n,k)[Q" and [Q7=3 S:(n,mQ¥]. O

k=1 k=1

For a G-set (Q,G), let w(g) be the number of points of @ fixed by an
element g of G. By Burnside’s Lemma (V.20.4 [5]), the average number of
fixed points

1 n
(3.2) il > n(9)

9€G

is the number of orbits of G on the n-th direct power Q™. By Proposition

3.1,

1
(3.3) el > (@)
I 9€G
is the number of orbits of G on the n-th irredundant power QI (Lem.6.3

(3]). Recall that the exponential generating function for a sequence (a,)%

. o0 f Al
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Theorem 3.2. (5.1, Th.6.4 [7]) The exponential generating functions for
the numbers of orbits on the direct power G-sets (@, G)™ and the irredun-
dant power G-sets (@, G)[™ are respectively
(3.4) 3@ and = 3+,

IGl 9€G |G| geG

where 7(g) is the number of points of ) fixed by an element g of G. O

4. BI-RESTRICTED POWERS

Consider the n-th direct power Q™ as the set of functions to @ from the
n-set {1,2,3,...,n}. Then the n-th irredundant power Q" is the subset
consisting of injective functions from the n-set into ). For each positive

integer n, the n-th bi-restricted power set of the set @ is defined to be
41 QU ={5:{1,2,3,...,n} » Q|VgeQ, If g} <2}

Thus QI is an intermediate set, included in Q™ and including Q™. For a
G-set (Q,G), the restriction of the direct power action of G on Q" to Q["])
is called the n-th bi-restricted power of (Q,G), and denoted by (Q,G)["Il.

The following proposition shows how the Bessel numbers yield a dual

relation between the bi-restricted powers and the irredundant powers.
Proposition 4.1. (Props.7.5, 6 [3])
L [Q] = 3%, B(k, 2k — n)[QM).

2. [QI] = T, (~1)"*B(n — 1,k — 1[QUAT]. =

Bringing in the Stirling numbers, one can obtain a dual relation between

the bi-restricted powers and the direct powers.

Proposition 4.2. (Rmk.7.8 {3])

1 [QIP] = 37%; (s B(m,2m — n) - Si(m, k)) [Q*]
2. [Q™ = Yroy (T (=)™ - Sy(n,m) - B(m — 1,k — 1)) [QUE]. O



The following theorem shows that the exponential generating function
for the number of orbits on the bi-restricted powers is an intermediate

function between the exponential generating functions in (3.4).

Theorem 4.3. (Th.7.7 [3]) The exponential generating function for the

number of orbits on the bi-restricted powers (Q, G)l") is

n(g)
4.
(4.2) IGIZ(HHW) ,
where 7(g) is the number of points of Q fixed by an element g of G. O

5. TRI-RESTRICTED NUMBERS AND POWERS

By analogy with Theorem 4.3, we now want to build a new G-subset of

Q™ such that the truncation
1 2 48
— — 4 —y7(9)
(5.1) ;GIE (1+t+2!+3!)

of et™9) is the exponential generating function for the number of orbits in
the G-subset. The first task is to introduce the coefficients that will play

the role of the Bessel numbers in Proposition 4.1.

Definition 5.1. For an indeterminate X, let
2
Ft) = (1 +it ot )
< 3!
The tri-restricted numbers of the first kind Ti(n, k) are defined by

n
(5.2) FM0) =3 Ti(n, k)X,
k=1
where f(")(0) is the n-th derivative of f with respect to ¢ at ¢t = 0. O

An explicit form for the tri-restricted numbers of the first kind is given

by the following proposition.



Proposition 5.2. For any positive integers n and k, T1(n, k) =

if [g]gkgn

| #52)
n!
th
en t_; (21)3k—n—2¢(30)n—ZK 141 (3k — 1 — 2¢)!(n — 2k + 2)!
else 0,

where |z] is the greatest integer less than or equal to =, [x] is the least

integer greater than or equal to z, and

to= if [%]gkgn then 2k—n else 0.

Proof. Let g(t) = 1+t + %2,- + % Then f(t) = (g(¢))%X, and the terms of
the n-th derivative f(™(t) of f(t) have the form

(53)  [XIe(g®) X ~*(g &) (g" (1)) (g (1))
for all non-negative integers t, 3k —n—2t and n—2k+t. For all non-negative

integers A1, Az,... Ay suchthat Ay + Ao+ + A, =kand \y +2 o +--- +

nA, = n, the number of k-partitions of an n-set of type 11232 .. .p*» is

n!
(IHA (2022 L. ()2 (AT ()Y
Since t+(3k—n—2t)+(n—2k+t) = k and t+2(3k—n—2t)+3(n—2k+t) = n,

(5.4)

there are
n!
(1NE(2N)3k—n—2t(3Nn=2k+t41(3k — n — 2t)/(n — 2k + t)!
many terms [X]x(g(t))¥~*(g' (1)) (" (1))** "2 (¢ (2))"~?*+* in fIM(2).
Since g(0) = ¢'(0) = ¢"(0) = g®®(0) = 1, one obtains the expression
(5.6)

(5.5)

= n! X
kz_; tga () @2 (3R (3k — 7 = 30)i(n — 2k 7 1 | 23
| sk—n=2t>0
n—2k+t 50
for f(®)(0). Tt is clear that Ty (n,k) = 0 for all k > n, since f(™(¢) cannot

have any term containing [X]x for any k > n. If k < [2], one has 3k < n
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and 3k —n — 2t < n —n — 2t < —2¢, which violates the constraints ¢ > 0
and 3k —n — 2t > 0. Therefore T1(n,k) = 0 for all k < [2]. Solving
n—2k+t>0and 3k —n— 2t >0 for ¢, one obtains

t>2k—n and t§3k2_n.
Together with ¢ > 0 and the fact that ¢ is an integer, this gives
(5.7) maz{0,2k —n} <t < [3k2_n_|.

2l <k< [%], one has 2k < n, and if 2] < k < n, one has n < 2k.
Then

0 if [2] <k < [2]
2k—n if |2] <k<n.

The required form for T} (n, k) is furnished by (5.6), (5.7) and (5.8). O

(5.8)  maz{0,2k —n} = {

As an immediate corollary, one obtains the following combinatorial in-

terpretation of the tri-restricted numbers of the first kind.

Corollary 5.3. For each positive integer n, T} (n, k) is the total number of

k-partitions of an n-set of type 1t23k—n—2tgn—2k+t40 0 O

The following table shows the first few tri-restricted numbers of the first

kind. The empty cells are to be filled with 0’s.

8 7 6 5 4 3 2 1=k Ti(n, k)
1 n=1

1 1 2

1 3 1 3

1 6 7 4

1 10 25 10 5

1 15 65 75 10 6

1 21 140 315 175 7

1 28 266 980 1225 280 8

The tri-restricted numbers of the first kind

By analogy with (4.1), one may now define the desired subset of Qr.



Definition 5.4. The n-th tri-restricted power of a set @ is

(5.9) QUM = {f:{1,2,3,...,n} > Q| Vg€ Q,|f{g}| < 3}.

For a G-set (Q,G), the restriction of the diagonal action of G' on Q™ to
QU is called the n-th tri-restricted power of (Q,G), and denoted by
(@, G)[[[n]]]_ 1

Lemma 5.5. Qi1 € Qlinll ¢ Qlinlll € @n. O

Tri-restricted powers are related to irredundant powers via the tri-restricted

numbers of the first kind.

Theorem 5.6.

n
(5.10) (U] = 3™ T4 (n, k) [Q™M)].

k=1
Proof. Let A? = {f € Q" | k = [Im(f)| and Vq € @, |f~*(¢)| < 3} and
n={feQ"|k=m(f)|]}. Then AP = Q} N QI and Q"N is the
disjoint union of the A?. For any partition m of the n-set {1,2,3,...,n}
of type 1t23k—n—2tgn=2k+t40 0 let Q, = {f € Q™ | m = ker(f)}.
Then @ is in A%, and is G-isomorphic to Q). Since there are Ti(n, k)
partitions of an n-set of the type 1t23k—n—2t3n—2k+¢40 10 the G-set A}

is G-isomorphic to Ty (n, k) copies of Q!*l. Therefore

(5.11) QUAN = | J A7 = JTu(n, k)Q™M.

Considering the isomorphism classes from (5.11), one obtains (5.10). O

By Proposition 3.1 and Proposition 4.1(2) taken together with Theorem
5.6, the tri-restricted powers can be expressed in terms of the direct powers

or the bi-restricted powers as follows;

Corollary 5.7.

L [QUAN = 5 (S0, Ti(n,m) - 51(m, k) [Q*]
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2. [l - Yk=1 (Cmek (C1)™*Ti(n,m) - B(m — 1,k — 1)) [QUA)] O

Now consider the matrix 71 whose (n,k)-th entry is T}(n, k) for each
n, k. Since T is a lower triangular matrix whose diagonal elements are all

1, we can consider the inverse matrix of 7.

Definition 5.8. The tri-restricted number of the second kind To(n, k) is
defined to be the (n, k)-entry of the inverse matrix of Tj. W]

The following table shows the first few tri-restricted numbers of the

second kind. The empty cells are to be filled with 0’s.

8 7 6 5 4 3 2 1=k Ta(n, k)
1 n=1

1 -1 2

1 -3 2 3

1 —6 11 -5 4

1 —10 35 —45 10 5

1 -15 85 —210 175 35 6

1 =21 175 -700 1225 —315 —910 7

1 -28 322 -1890 5565 —5670 —6265 11935 8

The tri-restricted numbers of the second kind

Remark 5.9. Unlike the Stirling numbers of the second kind, the tri-restricted
numbers of the second kind T3(n, k) do not take alternating signs. The sum
of the last three numbers in each row of the above table becomes 0, i.e. for

all positive integers n < 8, one has
(5.12) Ty(n, 3) + T2(n,2) + Tz(n,1) = 0.

In fact, the relationship (5.12) holds for all positive integers, since T (1, 1) =
T1(2,1) = T1(3,1) = 1. This might be the reason for the non-alternating
signs of Ty(n, k), but to be sure one would need to find a formula or a

combinatorial interpretation for the Ty (n, k). a

One may now provide an inverse to the formula of Theorem 5.6 as follows.
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Proposition 5.10.

(5.13) Q"] = 3" Ty(m, QM. O
k=1

Applying Proposition 3.1 and Proposition 5.10 with Proposition 4.1(1),
the direct powers and the bi-restricted powers can be expressed in terms of

the tri-restricted powers as follows.

Corollary 5.11.

1. [Qn] = ZZ:l (Z?n=k Sz(n, m) - Ty (m k)) [ [[[k]]]]
2. [Q[[n]]] — E:ﬂ (z;;k B(m,2m — n) - Tz(m, k))[ TN ] 0

Finally, we conclude that (5.1) generates the numbers of orbits in the

tri-restricted powers of a G-set (@, G) with permutation character .

Theorem 5.12. The ezponential generating function for the number of

orbits on the n-th tri-restricted power G-set (Q, )i g

2t m(g)
(1+t+ +3') )

where w(g) is the number of points of Q fized by an element g of G.

(5.14) f) = Gl >

Proof. By Definition 5.1, the n-th derivative of f with respect tot at t = 0

is

FM(0) = -|—GT > (Z Tl(“ak)[ﬂ(g)]k>

gEG \k=1

= Ti(n,k ( Z [7(9)] )
k=1 gEG

By (3.3) and Theorem 5.6, it is easy to see that f(™)(0) is the number of

(5.15)

NgE

orbits of G on the n-th tri-restricted power QU O
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