ERRATA: "KEIMEL'S PROBLEM ON THE ALGEBRAIC AXIOMATIZATION OF CONVEXITY," A. KOMOROWSKI, A.B. ROMANOWSKA, AND J.D.H. SMITH

Replace p.17 of 20, l.-11 to p.18 of 20, l.-12 with the following text:

Definition 12.5. Set thresholds $0 \le s < t \le 1/2$. Set $\mathcal{B}^{s,t}$ to be the variety of idempotent, entropic, skew-commutative \underline{I}° -algebras defined by the following identities:

- (1) xy p = x for all p < s;
- (2) $xy \overline{\underline{p}} = y$ for all p > s';
- (3) all identities true in the variety $\mathcal{B}_{\text{mod}}^t$ of Definition 9.1.

Let $\mathcal{B}_{s,t}$ be the subvariety of $\mathcal{B}^{s,t}$ defined by all the identities w = vtrue in $\mathcal{B}^s_{\text{mod}}$ such that for all operation symbols \underline{p} appearing in w = vwith $s \leq p < t$ or $t' , the reduced form <math>w^t = v^t$ of w = v, described in Section 11, is an identity true in $\mathcal{B}^t_{\text{mod}}$ (or both sides of it are equal to the same variable).

Theorem 12.6. For thresholds $0 \leq s < t \leq 1/2$, the join $\mathcal{B}^s \vee \mathcal{B}^t$ of the varieties \mathcal{B}^s and \mathcal{B}^t is equal to the variety $\mathcal{B}_{s,t}$.

Proof. First recall that for any 0 < r < 1/2, each \mathcal{B}^r -algebra satisfies the identities xy p = x for all small operations p, then xy p = y for all large operations p and all identities true in $\mathcal{B}^q_{\text{mod}}$, for $q \ge r$, involving only moderate operations. Since s < t, it follows by Definition 12.5 that any identity true in $\mathcal{B}^{s,t}$ is satisfied in both the varieties \mathcal{B}^s and \mathcal{B}^t . The same holds for the identities defining the subvariety $\mathcal{B}_{s,t}$, since in \mathcal{B}^t any such identity reduce to an identity true in $\mathcal{B}^t_{\text{mod}}$. Hence each identity true in $\mathcal{B}_{s,t}$ holds in $\mathcal{B}^s \vee \mathcal{B}^t$. Consequently, $\mathcal{B}^s \vee \mathcal{B}^t \le \mathcal{B}_{s,t}$.

To verify the converse inequality, we will show that each identity true in both \mathcal{B}^s and \mathcal{B}^t (and hence in $\mathcal{B}^s \vee \mathcal{B}^t$) is also satisfied in $\mathcal{B}_{s,t}$. First note that all left-zero and all right-zero identities true in \mathcal{B}^s also hold in $\mathcal{B}^s \vee \mathcal{B}^t$, and in $\mathcal{B}_{s,t}$.

Now let

$$(12.1) w = v$$

be an identity satisfied in $\mathcal{B}^s \vee \mathcal{B}^t$ containing some operation symbols \underline{p} for $s \leq p \leq s'$.

Suppose that all the operation symbols appearing in (12.1) belong to [t, t']. Then the identity is satisfied by all \mathcal{B}^t -algebras, and hence by all $\overline{\mathcal{B}^t_{mod}}$ -algebras. Consequently, it holds in all $\mathcal{B}^{s,t}$ -algebras.

Now let (12.1) be an identity, true in the variety \mathcal{B}^s , containing both small and moderate operations. Then by results of Section 11, it is equivalent to the identity $w^s = v^s$ true in \mathcal{B}^s_{mod} containing only operation symbols from [s, s'].

So assume now that (12.1) contains operation symbols \underline{p} only in the range $s \leq p \leq s'$. The identity holds also in the variety $\mathcal{B}^{\overline{t}}$ precisely in two cases. Either all its operation symbols belong to $[\underline{s}, \underline{t}] \cup [\underline{t'}, \underline{s'}]$, and then both sides are equal to the same variable, or there are operation symbols in (12.1) belonging to $[\underline{t}, \underline{t'}]$, and then the identity is equivalent to the identity $w^t = v^t$ true in $\overline{\mathcal{B}^t_{\text{mod}}}$. It follows that the identities true in both \mathcal{B}^s and \mathcal{B}^t satisfy the conditions of Definition 12.5. Hence they hold in $\mathcal{B}_{s,t}$, and $\mathcal{B}_{s,t} \leq \mathcal{B}^s \vee \mathcal{B}^t$.

Note that the variety $\mathcal{B}_{s,t}$ is a proper subvariety of the variety $\mathcal{B}^{s,t}$. This is shown by the following example. First observe that the algebra $(I, \underline{I}^{\circ})$ with appropriately defined operations may be considered as a member of each of the varieties \mathcal{B}^t for $t \neq 0$ and $\mathcal{B}^{s,t}$. As a member I^t of \mathcal{B}^t it satisfies the identities defining \mathcal{B}^t and as a member $I^{s,t}$ of $\mathcal{B}^{s,t}$ it satisfies the identities defining $\mathcal{B}^{s,t}$.

Example. Let 0 < s < 1/5 and 2/5 < t < 1/2. Let p = 1/4 and q = 1/5. Then $p \circ q = 2/5$ and $q/(p \circ q) = 1/2$. Since $s < p, q, p \circ q < t$, it follows that the variety \mathcal{B}^s satisfies skew-associativity for p = 1/4 and q = 1/5. On the other hand, the same identity holds in \mathcal{B}^t , since in this case both of its sides are equal to x. It follows that the identity holds in $\mathcal{B}_{s,t}$.

Now consider the algebra $I^{s,t}$ but satisfying additionally the following conditions: xy1/5 = y and xy2/5 = x, and moreover xy4/5 = xand xy3/5 = y. It is easy to check that this algebra is a member of $\mathcal{B}^{s,t}$. However, it does not belong to $\mathcal{B}_{s,t}$. The left-hand side of skewassociativity for p = 1/4 and q = 1/5 equals z, whereas the right-hand side equals x.