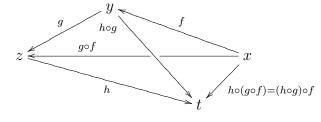
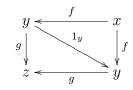
2. Categories

Category: Quiver $C = (C_0, C_1, \partial_0 : C_1 \to C_0, \partial_1 : C_1 \to C_0)$ with:

- composition: $\forall x, y, z \in C_0$, $C(x, y) \times C(y, z) \rightarrow C(x, z); (f, q) \mapsto q \circ f$
- satisfying associativity: $\forall x, y, z, t \in C_0$,
- $\forall \ (f,g,h) \in C(x,y) \times C(y,z) \times C(z,t) \ , \ h \circ (g \circ f) = (h \circ g) \circ f$



• identities: $\forall x, y, z \in C_0$, $\exists 1_y \in C(y, y)$. $\forall f \in C(x, y)$, $1_y \circ f = f$ and $\forall g \in C(y, z)$, $g \circ 1_y = g$



Example: $\mathbb{N}_0 = \{x\}, \ \mathbb{N}_1 = \mathbb{N}, \ 1_x = 0, \ \forall \ m, n \in \mathbb{N}, \ n \circ m = m + n;$ one object, lots of arrows [monoid of natural numbers under addition]

Equation: 3+5=4+4 Commuting diagram: $\begin{array}{c} x \xrightarrow{4} x \\ 3 \\ x \xrightarrow{5} x \end{array}$

Example: $\mathbb{N}_0 = \mathbb{N}, \ \forall \ m, n \in \mathbb{N}, \ |\mathbb{N}(m, n)| = \begin{cases} 1 & \text{if } m \leq n; \\ 0 & \text{otherwise} \end{cases}$ — lots of objects, lots of arrows [poset (\mathbb{N}, \leq) as a category]

These two examples are **small categories**: have a set of morphisms.

Example: The category **Set** has the class of all sets as its object class, with $\mathbf{Set}(X, Y)$ as the set of all functions from X to Y, composition of functions: $g \circ f(x) = g(f(x))$, usual identities $1_X : X \to X; x \mapsto x$.

This example is **large** (not small), but **locally small:** just a set of arrows between each pair of objects.

 $\mathbf{2}$