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2. Categories

Category: Quiver C = (C0, C1, ∂0 : C1 → C0, ∂1 : C1 → C0) with:

• composition: ∀ x, y, z ∈ C0 ,
C(x, y)× C(y, z)→ C(x, z); (f, g) 7→ g ◦ f
• satisfying associativity: ∀ x, y, z, t ∈ C0 ,
∀ (f, g, h) ∈ C(x, y)× C(y, z)× C(z, t) , h ◦ (g ◦ f) = (h ◦ g) ◦ f
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• identities: ∀ x, y, z ∈ C0 , ∃ 1y ∈ C(y, y) .
∀ f ∈ C(x, y) , 1y ◦ f = f and ∀ g ∈ C(y, z) , g ◦ 1y = g
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Example: N0 = {x} , N1 = N , 1x = 0 , ∀m,n ∈ N , n◦m = m+n ; —

one object, lots of arrows [monoid of natural numbers under addition]

Equation: 3 + 5 = 4 + 4 Commuting diagram:
x

4 //
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// x

Example: N0 = N , ∀ m,n ∈ N , |N(m,n)| =

{
1 if m ≤ n;

0 otherwise

— lots of objects, lots of arrows [poset (N,≤) as a category]

These two examples are small categories: have a set of morphisms.

Example: The category Set has the class of all sets as its object class,
with Set(X, Y ) as the set of all functions from X to Y , composition of
functions: g ◦ f(x) = g

(
f(x)

)
, usual identities 1X : X → X;x 7→ x.

This example is large (not small), but locally small:
just a set of arrows between each pair of objects.
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