39. Dagger categories

Dagger category C has a contravariant functor \dagger : $\mathbf{C} \to \mathbf{C}$, with: $X^{\dagger} = X$ for $X \in \mathbf{C}_0$, adjoint $f^{\dagger}: Y \to X$ of $f \in \mathbf{C}(X,Y)$, $f^{\dagger\dagger} = f$.

Example: One-object linear categories \mathbb{C} , \mathbb{H} with $x^{\dagger} = \overline{x}$.

Morphism f in dagger category \mathbf{C} is:

- Hermitian or self-adjoint if $f^{\dagger} = f$;
- unitary if invertible and $f^{\dagger} = f^{-1}$.

Dagger monoidal category: † is a strict monoidal functor.

Dagger compact closed category: $\forall X \in \mathbf{C}_0$, $\operatorname{coev}_X = (\operatorname{ev}_X)^{\dagger}$.

Lemma: $\forall f \in \mathbf{C}_1, f^{\dagger *} = f^{*\dagger}$. (Necessary, not sufficient, for DCCC.)

Biproduct dagger compact closed category: $\forall X \in \mathbb{C}_0$, $\pi_X^{\dagger} = \iota_X$.

Example: Category **FDHilb** of finite-dimensional Hilbert spaces, with $\forall x \in X$, $\forall y \in Y$, $\langle f(x) | y \rangle = \langle x | f^{\dagger}(y) \rangle$ for $f: X \to Y$.

Example: Rel with $R^* = R^{\dagger}$ as the converse relation.

Information theory: A bit in a BDCCC is $2 := 1 \oplus 1$.

Examples: $\{0,1\}$ in **Rel**, or **qubit** $\mathbb{C} \oplus \mathbb{C} = \mathbb{C}^2$ in **FDHilb**.

Extract information from [1, 1],

e.g., false = \emptyset and true = 1_1 in Rel, or scalar $1 \mapsto c$ in FDHilb.

Trace of
$$f \in [X, X] = X^* \otimes X$$
 is
$$\mathbf{1} \xrightarrow{\operatorname{coev}_X} X \otimes X^* \xrightarrow{\tau} X^* \otimes X \xrightarrow{1_{X^*} \otimes f} X^* \otimes X \xrightarrow{\operatorname{ev}_X} \mathbf{1}.$$

Example in FDHilb:

$$\sum_{j} e_{j} \otimes \widehat{e}_{j} \mapsto \sum_{j} \widehat{e}_{j} \otimes e_{j} \mapsto \sum_{j} \widehat{e}_{j} \otimes f(e_{j}) \mapsto \sum_{k} \sum_{j} \widehat{e}_{j} \otimes f_{jk} e_{k} \mapsto \sum_{j} f_{jj}$$

Positive endomorphism $f: X \to X$ if $\exists g: X \to Y$. $f = g^{\dagger} \circ g$.

Examples: In Rel, $x R y \Rightarrow y R x$ and x R x. In FDHilb, $\forall x \in X$, $\langle f(x) | x \rangle \geq 0$.

Complete positivity of $f: [X, X] \to [Y, Y]$ or $f: X^* \otimes X \to Y^* \otimes Y$: $\forall Z \in \mathbf{C}_0, \ \forall \text{ positive } g: \mathbf{1} \to Z^* \otimes X^* \otimes X \otimes Z,$ $\mathbf{1} \xrightarrow{g} Z^* \otimes X^* \otimes X \otimes Z \xrightarrow{1_{Z^*} \otimes f \otimes 1_Z} Z^* \otimes Y^* \otimes Y \otimes Z \text{ is positive.}$