37. Compact closed categories

Compact closed category: Symmetric, monoidal $(C, \otimes, 1)$ with:

- Contravariant duality functor $*: C \to C$;
- Evaluation natural transformation $ev_X : X^* \otimes X \to \mathbf{1}$; and
- Coevaluation natural transformation $coev_X \colon \mathbf{1} \to X \otimes X^*$,

yanking conditions

$$\left(X \xrightarrow{\operatorname{coev}_X \otimes 1_X} X \otimes X^* \otimes X \xrightarrow{1_X \otimes \operatorname{ev}_X} X\right) = 1_X$$
 and
$$\left(X^* \xrightarrow{1_{X^*} \otimes \operatorname{coev}_X} X^* \otimes X \otimes X^* \xrightarrow{\operatorname{ev}_X \otimes 1_{X^*}} X^*\right) = 1_{X^*}$$

Lemma: Internal hom $[X,Y] = X^* \otimes Y$.

Example: $(\mathcal{L}_{fin}, \otimes, K)$ with duality $X^* = \mathcal{L}(X, K)$. If X has basis $\{e_1, \ldots, e_n\}$, and X^* has dual basis $\{\widehat{e}_1, \ldots, \widehat{e}_n\}$ with $\widehat{e}_i(e_j) = \delta_{ij}$, then coev: $K \to X \otimes X^*$; $1 \mapsto \sum_{j=1}^n e_j \otimes \widehat{e}_j$.

Yanking:
$$e_i \mapsto \sum_{j=1}^n e_j \otimes \widehat{e}_j \otimes e_i \mapsto \sum_{j=1}^n e_j \otimes \widehat{e}_j(e_i) = \sum_{j=1}^n e_j \delta_{ji} = e_i$$

and $\widehat{e}_i \mapsto \widehat{e}_i \otimes \sum_{j=1}^n e_j \otimes \widehat{e}_j \mapsto \sum_{j=1}^n \widehat{e}_i(e_j) \otimes \widehat{e}_j = \sum_{j=1}^n \delta_{ij} \widehat{e}_j = \widehat{e}_i$.

Lemma: For Y with basis $\{d_1, \ldots, d_m\}$, morphism $e_i \mapsto d_j$ corresponds to tensor $\widehat{e}_i \otimes d_j$.

Example: Relation category Rel, biproduct is the disjoint union with

$$X\ni x \xrightarrow{\iota_X} x \in X+Y\ni y \xrightarrow{\pi_Y} y \in Y$$

Monoidal category (**Rel**, \times , {0}), compact closed with $X^* = X$.

Evaluation $\{((x, x), 0) \mid x \in X\}$, coevaluation $\{(0, (x, x)) \mid x \in X\}$.

First yanking condition:

relation product of
$$\{(x, (x', x', x)) \mid x, x' \in X\}$$

with $\{((x', x, x), x') \mid x, x' \in X\}$ is $\{(x, x) \mid x \in X\}$.

Second is similar.