21. Typical equivalences

• Skeleton S of C: unique representative for each isomorphism class. Like poset (P, \leq) induced in preorder (Q, \leq) , essentially surjective $K: S \hookrightarrow C$ has reflection $L: C \to S$.

essentially surjective $K : \mathcal{I} \to \mathcal{C}$ has reflection $L : \mathcal{C} \to \mathcal{I}$.

Ex: $\{\{i \in \mathbb{N} \mid i < n\} \mid n \in \mathbb{N}\}\$ as object set of skeleton of **FinSet**.

• Morita equivalence: Ring R, ring R_n^n of $n \times n$ -matrices over R. Mod_R $\overbrace{\qquad }^F$ $Mod_{R_n^n}$ with $U: M \to M \oplus \cdots \oplus M$, $F: [R_n^n \to \operatorname{End}(N)] \mapsto [R \to R_n^n \to \operatorname{End}(N)].$

Concrete category:

Category of sets with structure (algebraic, topological,...) and structure-preserving functions (homomorphisms, continuous,...).

• Duality: Equivalence $\mathbf{A} \xrightarrow[U]{} \mathbf{X}^{\mathsf{op}}$ of concrete categories.

Dualizing object: Set T with structure $T \in \mathbf{A}$ or $T \in \mathbf{X}$, where: $\forall A \in \mathbf{A}_0$, $\mathbf{A}(A,T) \leq \mathbf{Set}(A,T) = T^A \in \mathbf{X}$ and: $\forall X \in \mathbf{X}_0$, $\mathbf{X}(X,T) \leq \mathbf{Set}(X,T) = T^X \in \mathbf{A}$. Then $U = \mathbf{A}(_,T)$ and $F = \mathbf{X}(_,T)$.

Example: Category \mathcal{L}_{fin} of fin.-dim. vector spaces over a field K. Then $\mathbf{A} = \mathbf{X} = \mathcal{L}_{fin}$, T = K and $\varepsilon_V^{-1} \colon V \to V^{**}; v \mapsto [f \mapsto f(v)]$.

Example: Fourier transforms, Pontryagin duality.

Then $\mathbf{A} = \mathbf{Ab}$, $\mathbf{X} = \mathbf{CAb}$ (compact abelian groups), and $T = (\mathbb{R}/\mathbb{Z}, +, 0)$ "1-dimensional torus" or $(S^1, \cdot, 1)$ "circle group". $\widehat{A} := UA = \mathbf{Ab}(A, T)$, the group of **characters** $\chi : A \to T$. $\varepsilon_A^{-1} : A \to FUA; a \mapsto [\chi \mapsto \chi(a)].$

Example: Category **A** of finite Boolean algebras, $\mathbf{X} = \mathbf{FinSet}$, dualizing object $T = \mathbf{2} := \{0, 1\}$, so power set FX (char. fns.). $\eta_X \colon X \to UFX; x \mapsto [\chi \mapsto \chi(x)].$

Note: Can extend from a category $A_{f.g.}$ of finitely generated algebras to a category A of all algebras: treat as colimits of f.g. algebras, which will dualize to limits of $X_{f.g.}$ -objects.