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8. Products and coproducts

Product X × Y = {(x, y) | x ∈ X , y ∈ Y } of sets X, Y :
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Universality property: ∀ Z ∈ Set0, “solid”↓ implies ↓“dashed”
bijection Set(Z,X)× Set(Z, Y )→ Set(Z,X × Y ); (f, g) 7→ f u g
with f = πX ◦ (f u g) and g = πY ◦ (f u g). Thus f u g : z 7→ (fz, gz).

Picture in Set2 for discrete “two spot” diagram 2 = • • :
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Examples: Product in Set carries products in Grp, Ring, Mon, etc.

Example: Product in a poset category is a greatest lower bound.

a b a× b = c exists,
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but c× d does not.

Coproduct in C is the product in Cop: X
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Example: Coproduct in Set is the disjont union.

Example: Coproduct in a poset category is a least upper bound.
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in L is product and coproduct.
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