8. Products and coproducts

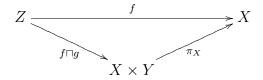
Product $X \times Y = \{(x, y) \mid x \in X, y \in Y\}$ of sets X, Y:

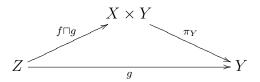
$$X \xrightarrow{\pi_X} X \times Y \xrightarrow{\pi_Y} Y$$

$$f \cap g \mid \qquad \qquad g$$

Universality property: $\forall Z \in \mathbf{Set}_0$, "solid" \downarrow implies \downarrow "dashed" bijection $\mathbf{Set}(Z,X) \times \mathbf{Set}(Z,Y) \to \mathbf{Set}(Z,X\times Y); (f,g)\mapsto f\sqcap g$ with $f = \pi_X \circ (f \sqcap g)$ and $g = \pi_Y \circ (f \sqcap g)$. Thus $f \sqcap g \colon z \mapsto (fz, gz)$.

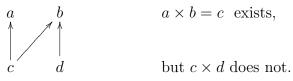
Picture in \mathbf{Set}^2 for discrete "two spot" diagram $2 = \bullet$:





Examples: Product in Set carries products in Grp, Ring, Mon, etc.

Example: Product in a poset category is a **greatest lower bound**.



 $a \times b = c$ exists,

Coproduct in C is the product in C^{op} : $X \xrightarrow{\iota_X} X + Y \xrightarrow{\iota_Y} Y$

Example: Coproduct in **Set** is the disjont union.

Example: Coproduct in a poset category is a **least upper bound**.

Biproduct $U \xrightarrow{\iota_U} U \oplus V \xrightarrow{\iota_U} V$ in \mathcal{L} is product and coproduct.