MATH 504 FALL 2003 PRACTICE MID-TERM

Hand in 3 answers for grading. Each question is worth $8\frac{1}{3}$ points.

- (1) For a set function $f : A \to B$, suppose that there are set functions $g : B \to A$ and $h : B \to A$ such that $fg = 1_A$ and $hf = 1_B$. Prove g = h.
- (2) For non-empty sets X, Y, let P(x, y) be a proposition involving elements x of X and y of Y. Define $E(y) = (\exists x \in X. P(x, y))$. Prove the following equality between truth values:

$$[E(y)] = \max\{[P(x,y)] \mid x \in X\}$$

- (3) Let A be a set. Prove that the direct power A^n is isomorphic to $\underline{\text{Set}}(\{1, 2, \dots, n\}, A)$ for each positive integer n.
- (4) Let α be a reflexive and transitive relation on a set A. Define a relation β on A by

$$x \beta y \quad \Leftrightarrow \quad (x \alpha y \text{ and } y \alpha x).$$

- (a) Prove that β is an equivalence relation on A.
- (b) Prove that

$$x^{\beta} \le y^{\beta} \qquad \Leftrightarrow \qquad x \ \alpha \ y$$

yields a well-defined order relation on the quotient A^{β} .

- (5) An element x of a monoid M is *invertible* if and only if its image $R_x : M \to M$ under the right regular representation $R: M \to M^M$ is an invertible function.
 - (a) Show that the set M^* of invertible elements of M forms a submonoid of M.
 - (b) Prove $x \in M^* \Rightarrow \exists y \in M. xy = 1_M$.