MATH 504 FALL 2003 PRACTICE FINAL

- (1) Prove or disprove the following statement for sets A, B, and C: If $A \cup B$ is isomorphic to $A \cup C$, then B is isomorphic to C.
- (2) Express the poset $(2^{\{a,b,c\}},\subseteq)$ as an intersection of linear orders.
- (3) Let (X, G) be a transitive G-set for a group G. Prove that the following are equivalent:
 - (a) $\forall x \in X, \forall g \in G, xg = x \Rightarrow g = 1$;
 - (b) $\exists x \in X. \forall g \in G \{1\}, xg \neq x.$
- (4) Compute the size of each (group) conjugacy class of the group A_5 .
- (5) Let e be an element of a group (G, \cdot) .
 - (a) Show that the set G forms a group under the multiplication

$$*: G \times G \to G; (x, y) \mapsto xe^{-1}y.$$

- (b) Show that the group (G, *) with multiplication given in (a) is isomorphic with the original group structure (G, \cdot) on G.
- (6) Let G be a 2-transitive permutation group on a set X of size n. Prove that |G| is divisible by n(n-1)/2.
- (7) Let A, B, and C be subgroups of a group G, with $A \subseteq C \subseteq AB$. Show that $C = A(B \cap C)$.
- (8) Show that a group G of order 135 cannot be simple. [You may use Sylov's Theorems, if you carefully quote which ones you use.]