MATH 301B SPRING 2010 PRACTICE TEST #1

Write clearly. All questions carry equal weight. You will receive credit for your three best answers.

- (1) Write $\sigma_a : \mathbb{R} \to \mathbb{R}; x \mapsto a + x$ for the shift by a real number a. Suppose that a group G of permutations of \mathbb{R} contains σ_a and σ_b for real numbers a and b.
 - (a) Show that G contains σ_{ma} for each positive integer m.
 - (b) Show that G contains σ_{ma} for each integer m.
 - (c) Show that the group G contains σ_{ma+nb} for each integral linear combination ma + nb of a and b.
- (2) Let β , and $\alpha = (x_1 \ x_2 \ \dots \ x_{r-1} \ x_r)$, be permutations of a finite set X. Show that

$$\beta \circ \alpha \circ \beta^{-1} = \left(\beta(x_1) \beta(x_2) \dots \beta(x_{r-1}) \beta(x_r) \right).$$

(3) Consider the figure

Writing each element as a product of disjoint cycles, determine

- (a) the group of symmetries of the figure in 2-space and
- (b) the group of symmetries of the figure in 3-space.
- (4) Which of the following three conditions determines the kernel relation R of the cosine function $\cos : \mathbb{R} \to \mathbb{R}; x \mapsto \cos x$?

(a) x R y if and only if $x = \pm y$.

- (b) x R y if and only if $x = 2\pi n \pm y$ for some integer n.
- (c) x R y if and only if $x y = 2\pi n$ for some integer n.