MATH 3010-1 SPRING 2025 PRACTICE FINAL

Write clearly, on separate paper. All questions carry equal weight. You will receive credit for your five best answers.

- (1) Prove or disprove the following statement: A function $f: X \to Y$ is injective if and only if there is a function $r: Y \to X$ such that $r \circ f = id_X$.
- (2) For a positive integer d, define $\varphi(d) = |(\mathbb{Z}/_d, \cdot, 1)^*|$.
 - (a) Show that $\varphi(p) = p 1$ if p is prime.
 - (b) Show that $\varphi(mn) = \varphi(m)\varphi(n)$ if m and n are coprime.
- (3) Let e be an element of a group (G, \cdot) .
 - (a) Show that the set G forms a group under the multiplication

 $*\colon G\times G\to G; (x,y)\mapsto xe^{-1}y.$

- (b) Show that the group (G, *) with multiplication given in (a) is isomorphic with the original group structure (G, \cdot) on G.
- (4) Let X be a subset of a ring R. Let L be the intersection of all the ideals of R that contain X. Show that L is an ideal of R.
- (5) Let X be a subset of a ring R. Show that

 $C = \{r \text{ in } R \mid rx = xr \text{ for all } x \text{ in } X\}$

is a subring of R.

- (6) Let x be an element of a unital ring R. If $x^7 = 0$, show that 1 x is an invertible element of $(R, \cdot, 1)$.
- (7) Find the minimal polynomial of the kernel ideal of the evaluation homomorphism

$$\mathbb{Z}/_{5}[X] \to \left(\mathbb{Z}/_{5}\right)_{2}^{2}; p(X) \mapsto p\left(\begin{bmatrix} 0 & 3\\ 1 & 0 \end{bmatrix}\right).$$