21. BiJective \equiv INVERTIBLE \equiv ISOMORPHISM

Definition. On a set A, have the identity function $\mathrm{id}_{A}: A \rightarrow A ; x \mapsto x$.
Definition. Function $f: A \rightarrow B ; x \mapsto f(x)$ is invertible if there is a function $g: B \rightarrow A ; y \mapsto g(y)$ such that $\forall x \in A, g(f(x))=x$ and also $\forall y \in B, f(g(y))=y$, i.e., $g \circ f=\operatorname{id}_{A}$ and $f \circ g=\operatorname{id}_{B}$.

Note $g: B \rightarrow A$ is unique, the inverse $f^{-1}: B \rightarrow A$ of invertible f.
Definition. Function $f: A \rightarrow B ; x \mapsto f(x)$ is bijective if both injective and surjective.

Bijective \equiv invertible: $\quad f(x)=y \quad \Leftrightarrow \quad x=f^{-1}(y)$. (existence and uniqueness of the solution $x \in A$ to $f(x)=y$ for $y \in B$)

Isomorphic sets. Say sets A and B are isomorphic whenever there is a bijective function $f: A \rightarrow B$. Then write $A \cong B$ or $|A|=|B|-$ same (possibly infinite) cardinality.

Definition. Function $f: A \rightarrow B ; x \mapsto f(x)$ is a (set) isomorphism if it is bijective.

Note $|\mathbb{N}|=|A|$ means A is infinite, and can be written in roster notation as $A=\left\{a_{0}, a_{1}, a_{2}, \ldots\right\}$.

