21. BIJECTIVE \equiv INVERTIBLE \equiv ISOMORPHISM

Definition. On a set A, have the *identity function* $id_A: A \to A; x \mapsto x$.

Definition. Function $f: A \to B; x \mapsto f(x)$ is *invertible* if there is a function $g: B \to A; y \mapsto g(y)$ such that $\forall x \in A, g(f(x)) = x$ and also $\forall y \in B, f(g(y)) = y$, i.e., $g \circ f = id_A$ and $f \circ g = id_B$.

Note $g: B \to A$ is unique, the *inverse* $f^{-1}: B \to A$ of invertible f.

Definition. Function $f: A \to B; x \mapsto f(x)$ is *bijective* if both injective and surjective.

Bijective \equiv invertible: $f(x) = y \iff x = f^{-1}(y)$. (existence and uniqueness of the solution $x \in A$ to f(x) = y for $y \in B$)

Isomorphic sets. Say sets A and B are *isomorphic* whenever there is a bijective function $f: A \to B$. Then write $A \cong B$ or |A| = |B| — same (possibly infinite) *cardinality*.

Definition. Function $f: A \to B; x \mapsto f(x)$ is a *(set) isomorphism* if it is bijective.

Note $|\mathbb{N}| = |A|$ means A is infinite, and can be written in roster notation as $A = \{a_0, a_1, a_2, \dots\}$.