MATH 504 FALL 2014 PRACTICE MIDTERM

Write clearly, on separate paper. All questions carry equal weight. You will receive credit for your three best answers.

(1) Let N be a normal subgroup of a group G. Show that there is a bijection

 $\{M \mid N \lhd M \lhd G\} \rightarrow \{L \mid L \lhd G/N\}; M \mapsto MN/N.$

- (2) For $1 < n \in \mathbb{N}$ and $0 \leq r < n$, define $f_r \colon \mathbb{C} \to \mathbb{C}; z \mapsto z e^{2\pi i r/n}$ and $c \colon \mathbb{C} \to \mathbb{C}; z \mapsto \overline{z}$.
 - (a) Show that $D_n = \{f_0, \ldots, f_{n-1}, f_0 \circ c, \ldots, f_{n-1} \circ c\}$ is a subgroup of $\mathbb{C}!$.
 - (b) Show that the group D_4 is not isomorphic to Q_8 .
- (3) Let I and J be ideals of a ring R. If I + J = R, show that $R/(I \cap J) \cong R/I \times R/J$.
- (4) Consider elements A and D of the ring

$$\mathbb{Z}[i] = \left\{ \begin{bmatrix} x & -y \\ y & x \end{bmatrix} \middle| x, y \in \mathbb{Z} \right\}$$

with $D \neq 0$.

- (a) Show that there are elements Q and R of $\mathbb{Z}[i]$ such that A = DQ + R and det $R < \det D$.
- (b) Present an example to show that, for given A and D, the elements Q and R need not be unique.