MATH 307B SPRING 2012 PRACTICE TEST #5

Write clearly. Show your working. All questions carry equal weight.

- (1) Suppose $\mathbf{x}_1 = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}^T$ and $\mathbf{x}_2 = \begin{bmatrix} 1 & 2 & 1 \end{bmatrix}^T$. Find an orthogonal basis for the span of the set $\{\mathbf{x}_1, \mathbf{x}_2\}$.
- (2) Suppose $\mathbf{y} = \begin{bmatrix} 1 & 1 & 2 \end{bmatrix}^T$, $\mathbf{u}_1 = \begin{bmatrix} -2 & 1 & 0 \end{bmatrix}^T$, and $\mathbf{u}_2 = \begin{bmatrix} -1 & -2 & 1 \end{bmatrix}^T$.
 - (a) Show that the set $\{\mathbf{u}_1, \mathbf{u}_2\}$ is orthogonal.
 - (b) Find the orthogonal projection of the vector \mathbf{y} onto the span of the set $\{\mathbf{u}_1, \mathbf{u}_2\}$.
- (3) Find the slope m and y-intercept c of the straight line y = mx + c which gives the least squares fit to the data points (1, 2), (2, 1), and (3, 2).
- (4) For the matrix

$$A = \begin{bmatrix} 3 & 2\\ 2 & 3 \end{bmatrix},$$

find a diagonal matrix D and orthogonal matrix P such that $A = PDP^{-1}$.

(5) Suppose that $A = PDP^{-1}$ with a diagonal matrix D and orthogonal matrix P. Let λ be an eigenvalue of A of multiplicity k, so that λ appears precisely k times on the diagonal of D. Explain why the dimension of the eigenspace of A corresponding to λ is k.