MATH 302 SPRING 2014 PRACTICE FINAL

Write clearly. Box or underline your final answers to computational questions.

All questions carry equal weight.

- 1. Let x be an element of a unital ring R. If $x^7 = 0$, show that 1 + x is an invertible element of R.
- 2. Let I be an ideal of a ring R.
 - (a) If I is contained in an ideal J of R, show that J/I is an ideal of R/I.
 - (b) If K is an ideal of R/I, show that there is a unique ideal J of R, containing I, such that K = J/I.
- 3. The graphs of two cubic functions $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ each pass through the points (0,10), (1,12), (2,8) and (3,1). Prove that f=g.
- 4. Find a real number a such that $\mathbb{Q}(\sqrt{3}, \sqrt{7}) = \mathbb{Q}(a)$. Justify your answer.
- 5. Consider the evaluation homomorphism

$$\theta \colon \mathbb{Q}[X] \to \mathbb{R}; f(X) \mapsto f\left(\sqrt{1+\sqrt{2}}\right).$$

Find a monic polynomial p(X) in $\mathbb{Q}[X]$ such that $\operatorname{Ker} \theta = p(X)\mathbb{Q}[X]$.

6. Find all 3 monic irreducible polynomials of degree 2 over the field of order 3.