MATH 201 SPRING 2024 GRADED HOMEWORK \#3

Write clearly, on separate paper. All questions carry equal weight.
(1) Determine the limit of the sequence

$$
\left\{\frac{n^{3}+n \cos ^{5}(27 n)}{10 n^{3}+2 n+27}\right\}_{n \in \mathbb{N}}
$$

carefully justifying your answer.
(2) Suppose that $f: \mathbb{R} \rightarrow \mathbb{R} ; x \mapsto f(x)$ is a continuous function. For each natural number n, the function $f^{[n]}: \mathbb{R} \rightarrow \mathbb{R} ; x \mapsto f^{[n]}(x)$ is defined recursively by

$$
\begin{aligned}
f^{[0]}(x) & =x \\
f^{[n+1]}(x) & =f^{[n]}(f(x)) .
\end{aligned}
$$

Give a careful proof by induction that the function $f^{[n]}: \mathbb{R} \rightarrow \mathbb{R}$ is continuous for each natural number n.
(3) Let $\left\{a_{n}\right\}_{n \in U}$ be a monotonically decreasing sequence which is not a Cauchy sequence. Show that, for every real number M, there is a tail $\left\{a_{n}\right\}_{n \in T}$ of $\left\{a_{n}\right\}_{n \in U}$ such that $\forall n \in T, a_{n}<M$.

