
MATH 201, APRIL 20, 2020

The next assignment, an online test (or “quiz”) due Wednesday 4/22 at
5 pm CDT (hard deadline!) has now been posted on Canvas. There are
14 questions. Each question has a mathematical statement. You have
to identify whether the statement is true or false. We have covered all
the material you need for the test. In particular, there are no questions
on today’s new material.

Here is the lesson summary from last time.

Cauchy sequences

Definition. The sequence {xn}n∈U is convergent if

∃ L ∈ R . ∀ ε > 0 , ∃ M ∈ N . ∀ M ≤ n ∈ U , |xn − L| < ε .

— 4 quantifiers, compares terms against some limit L.

Definition. The sequence {xn}n∈U is a Cauchy sequence if

∀ ε > 0 , ∃ M ∈ N . ∀ M ≤ m,n ∈ U , |xm − xn| < ε .

— 3 quantifiers, compares terms against each other.

Proposition. A convergent sequence is a Cauchy sequence.

Proof estimate:

|xm − xn| = |(xm − L) + (L− xn)|

≤ |xm − L|+ |L− xn| ≤
ε

2
+

ε

2
= ε . �

Proposition. A Cauchy sequence is bounded.

Proof. For {xn}n∈U , choose M ∈ U so ∀M ≤ m,n ∈ U , |xm−xn| < 1.
Then ∀ k ∈ U , |xk| ≤ max

{
1 + |xM |,max{|xl| |M > l ∈ U}

}
. �

Theorem. Cauchy sequences converge.
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Homework problems

2.4.1: Show directly from the definition that{
n2 − 1

n2

}
0<n∈N

is a Cauchy sequence.

Solution. We start by rewriting the sequence terms as

xn =
n2 − 1

n2
= 1− 1

n2
.

Since the sequence {1/n2} converges to 0, we know that for a given
tolerance ε, there is a (positive) cost M such that

∀ M ≤ m,n ∈ N ,
1

n2
<

ε

2
.

Thus, ∀ M ≤ m,n ∈ N , |xm − xn|

=

∣∣∣∣ 1

n2
− 1

m2

∣∣∣∣ ≤ ∣∣∣∣ 1

n2

∣∣∣∣+

∣∣∣∣ 1

m2

∣∣∣∣ < ε

2
+

ε

2
= ε ,

verifying the Cauchy property.

We will not work out 2.4.4 in detail: It just uses a general version of
our method for 2.4.1, with yn as the {2/n2} sequence there.

Now for the “challenge” problem.

2.4.5: Let {xn} be a Cauchy sequence such that

(1) ∀ M ∈ N , ∃ k ≥M . xk < 0 and ∃ l ≥M . xl > 0 .

Show that lim xn = 0.

Solution. Consider a tolerance ε. By the Cauchy property, there is a
cost M such that

∀ M ≤ m,n , |xm − xn| <
ε

2
.

By the given property (1), we then have xl > 0 and xk < 0, with
k, l ≥M , so |x|−xk| < ε/2, which means in particular that |xl| < ε/2.
Thus

∀ M ≤ n , |xn| = |(xn − xl) + xl| ≤ |xn − xl|+ |xl| <
ε

2
+

ε

2
= ε ,

as required for the convergence of {xn} to 0.
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The new material: Series

In our 4/6 class, we started our work with sequences by considering
successive approximations s0, s1, s2, . . . to Euler’s number, the base
e = 2.7182818284 . . . of natural logarithms:

Sequence element (partial sum) Numerical value

s0 1.0000 = 1
0!

s1 2.0000 = 1
0!

+ 1
1!

s2 2.5000 = 1
0!

+ 1
1!

+ 1
2!

s3 2.6667 = 1
0!

+ 1
1!

+ 1
2!

+ 1
3!

s4 2.7083 = 1
0!

+ 1
1!

+ 1
2!

+ 1
3!

+ 1
4!

...
...

As you have probably noticed, this sequence was rather special (now
reflected in our switch to the notation sn and “partial sum”). In fact,
as captured by the following definition, sequences of this type are called
series, which come with their own special notations and terminology.

Definition. For h ∈ N, a series or infinite series
∞∑

n=h

xn or informally xh + xh+1 + xh+2 + . . .

means the sequence {
k∑

n=h

xn

}
h≤k∈N

of partial sums
k∑

n=h

xn

of the summands xn. We write
∞∑

n=h

xn = L

to express that the sequence of partial sums converges to L.

Example: Euler’s constant e =
∑∞

n=0
1
n!

= 2.7182818284 . . . .

Most of the sequence terminology carries over, so we have “convergent
series,” “bounded series,” “divergent series,” “Cauchy series,” etc.
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For today, we start working with series by explicitly finding a limit for
the sequence of partial sums. This can only be done in certain special
cases.

Geometric series:

(2)
∞∑
n=0

rn =
1

1− r
for a “ratio” r with |r| < 1 .

Here, consider the partial sum

sk =
k∑

n=0

rn = 1 + r + r2 + . . . + rk−1 + rk

for a natural number k. Now always, (1+r+. . .+rk)(1−r) = 1−rk+1, as
may be checked informally by multiplying out and cancelling (try it!),
or formally by induction on the natural number parameter k. Then,
noting 1− r 6= 0 for |r| < 1, we have

(3) sk =
1− rk+1

1− r
→ 1

1− r

if |r| < 1, and that is exactly what the equation (2) is saying, according
to the basic definition.

Note that we used Proposition 2.2.11(i) from the book here, setting
c = |r|, to obtain lim |r|k+1 = 0, and then the Squeezing Lemma applied
to −|r|k+1 ≤ rk+1 ≤ |r|k+1 to conclude that lim rk+1 = 0 in (3).

Telescoping series: Given a convergent sequence {yn}h≤n∈N → y,
∞∑

n=h

(yn − yn+1) = yh − Y ,

since
k∑

n=h

(yn − yn+1) = (yh − yh+1) + (yh+1 − yh+2) + . . . + (yk − yk+1)

= yh − yk+1 → yh − y .

Example.
∞∑
n=1

1

n(n + 1)(n + 2)
=
∞∑
n=1

[
1

2n(n + 1)
− 1

2(n + 1)(n + 2)

]
→ 1

4
.
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Here is the lesson summary.

Series

Definition. For h ∈ N, a series or infinite series
∞∑

n=h

xn or informally xh + xh+1 + xh+2 + . . .

means the sequence {
k∑

n=h

xn

}
h≤k∈N

of partial sums
k∑

n=h

xn

of the summands xn. Then write
∞∑

n=h

xn = L

if the sequence of partial sums converges to L.

Example: Euler’s constant e =
∑∞

n=0
1
n!

= 2.7182818284 . . . .

Most of the sequence terminology carries over, so have “convergent
series,” “bounded series,” “divergent series,” “Cauchy series,” etc.

Special series. Some series are easy to handle.

Geometric series:
∞∑
n=0

rn =
1

1− r
for “ratio” r with |r| < 1 .

Telescoping series: Given a convergent sequence {yn}h≤n∈N → y,
∞∑

n=h

(yn − yn+1) = yh − Y

since
k∑

n=h

(yn − yn+1) = (yh − yh+1) + (yh+1 − yh+2) + . . . + (yk − yk+1)

= yh − yk+1 → yh − y .


	Cauchy sequences
	Homework problems
	The new material: Series
	Series
	Special series


