
MATH 201, APRIL 8, 2020

The grader finished all the grading of the second graded homework
assignment shortly before the posting of this blog, so depending on
how soon you read the blog, the grade lists on Canvas might not yet
have been updated.

At any rate, it looks as if, on the whole, you’ve been doing a good job
with the homework. The median score out of 12 was 10.

Following are some suggested solutions to the homework questions.
They represent one way of tackling the problems, but other ways may
also work.

Remember that technical communication is a major aspect of what we
are learning in this class. So in a graded homework assignment, the
grader is assessing how well you’ve communicated your mathematical
message to them.

(1) Find the inverse of the function f : Rr {−3} → Rr {2} with

f(x) =
2x + 7

x + 3
.

Solution:

y = f(x) =
2x + 7

x + 3
⇔ 2x + 7 = y(x + 3) = yx + 3y

⇔ x(2− y) = 3y − 7

⇔ x =
3y − 7

2− y
= f−1(y)

1
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(2) Prove or disprove:

Proposition. The set D =
{
{m,n} ⊂ N

∣∣ m 6= n
}

of two-
element subsets of N is countable.

Solution: TRUE.

Proof. Consider the relation R =
{

(m,n) ∈ N × N
∣∣ m < n

}
.

The function

f : R→ D; (m,n) 7→ {m,n}
is bijective, so |R| = |D|.

Now since N is countable, the set N × N is countable. Thus
the infinite subset R of N×N is also countable, and |R| = |N|.
Hence |D| = |N|. �

(3) Prove or disprove:

Proposition. The power set P(Z) of Z is countable.

Solution: FALSE.
By Russell’s Paradox, |Z| < |P(Z)|, so |N| < |P(Z)|.

(4) Prove or disprove:

Proposition. Let (S,<) be a (totally) ordered set. Let E be
a nonempty subset of S for which inf E and supE exist. Then
inf E < supE.

Solution: FALSE.
Consider E = {0} ⊆ R. Then inf E = 0 = supE.
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Now we will recall the lesson summary from last time. We defined a
sequence to be a real-valued function whoes domain is an infinite set
of natural numbers, and explored the idea of convergence of a sequence
to a limit. For a bounded increasing sequence, the limit always exists,
as the supremum of the set of sequence values.

Sequences

Definition. A sequence {xn}n∈U or {xn} is a function

U → R;n 7→ xn

whose domain is a countably infinite subset U of N.

Definition. Let {xn}n∈U be a sequence.

(1) The sequence is (monotonic) increasing if

m < n ∈ U ⇒ xm ≤ xn .

(2) The sequence is (monotonic) decreasing if

m < n ∈ U ⇒ xm ≥ xn .

(3) The sequence is monotonic
if it is monotonic increasing or decreasing.

Convergence of sequences. Let {xn}n∈U be a sequence.

Definition. The sequence {xn}n∈U converges to a limit L if

∀ ε > 0 , ∃ M ∈ N . ∀ M ≤ n ∈ U , |xn − L| < ε .

“tolerance” ↑ ↑ “cost”

Write lim
n→∞

xn = L or just xn → L .

Definition. A sequence {xn}n∈U converges if

∃ L ∈ R . lim
n→∞

xn = L .

If not, the sequence diverges.

Propositions.

• Convergent sequences are bounded.
• A convergent sequence has a unique limit.
• Bounded monotonic increasing {xn}n∈U

converges to sup{xn | n ∈ U}.
• Bounded monotonic decreasing {xn}n∈U

converges to inf{xn | n ∈ U}.
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Homework problems from the previous class

The problems give us a first taste of working with sequences.

2.1.1: Prove or disprove: The sequence {3n}n∈N is bounded.

Proposition. The sequence {3n}n∈N is not bounded.

Proof. For any real number B, the Archimedean property shows that
there is a natural number n with 3n > B. �

For the next problem, recall that convergent sequences are bounded.

2.1.2: Is the sequence {n}n∈N convergent?

Solution. No, the sequence is not bounded, so it is not convergent.

For the final problem, we’ll first play around a little on “scratch paper”.
As we move to the harder questions, where you have no idea what to do
right away, this will become standard procedure. For positive integers
m,n, we have m−1/3 < n−1/3 ⇔ m1/3 > n1/3 ⇔ m3 > n3 ⇔ m > n .
Also, for ε > 0, we have n−1/3 ≤ ε ⇔ n1/3 ≥ ε−1 ⇔ n ≥ ε−3.

2.1.9: Show that the sequence {n−1/3}0<n∈N is monotone and bounded.
Find the limit.

Solution. Note m < n ⇒ m3 < n3 ⇒ m1/3 < n1/3 ⇒ m−1/3 > n−1/3,
so the sequence is monotone decreasing. Further, 0 < n−1/3 < 1 for
positive integers n, so the sequence is bounded, with 0 as a lower bound.
Finally,

inf{n−1/3 | 0 < n ∈ N} = 0,

since for ε > 0 there is a positive integer n with n ≥ ε−3, whence
n−1/3 ≤ ε, so ε no longer works as a lower bound. Thus the limit of
the sequence is 0 .

[In our solution, note the use of the Archimedean property, with 1 as
the tiny guy and ε−3 as the big bad bully. Now we’re moving on to
harder things, we no longer mention all that explicitly, but you will
still need to think it through as you assemble your answers.]
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The new material: Subsequences

With our definition of a sequence {xn}n∈U as a real-valued function
whose domain is an infinite subset U of N, it is very easy to give our
definition of a subsequence.

Definition. A subsequence {xn}n∈S of a sequence {xn}n∈U is a function

S → R;n 7→ xn

whose domain is a (countably) infinite subset S of U .

Compare this with Definition 2.1.16 in the book, where complicated
double-level tags are needed.

One of the main issues with subsequences is the question of how the
convergence properties of the original sequence and a subsequence are
related. As a first step, we can prove the following very easily.

Proposition. If {xn}n∈U converges to L,
then each subsequence {xn}n∈S converges to L.

Proof. Given a tolerance ε > 0, let M be the corresponding cost for
{xn}n∈U , so

∀ M ≤ n ∈ U , |xn − L| < ε .

Then since S ⊆ U , we have

∀ M ≤ n ∈ S , |xn − L| < ε .

Thus {xn}n∈S converges to L. �

Note how we have completely avoided the induction that is needed for
the book’s proof of the corresponding result (Proposition 2.1.17).

In the opposite direction, we see that the convergence of a subsequence
does not imply the convergence of the original sequence.

Example. A divergent sequence may have a convergent subsequence.
Consider the sequence {xn}n∈N with

xn =

{
n if n is odd;

0 if n is even.

Since the original sequence is unbounded, it does not converge. On the
other hand, the subsequence {xn}n∈2N is the constant sequence {0}n∈2N,
which converges to 0.



6 MATH 201, APRIL 8, 2020

In contrast with general subsequences, whose convergence does not
imply the convergence of the original sequence, there are special kinds
of subsequences, called tails, whose convergence does extend to the
full sequence.

Let {xn}n∈U be a sequence.

Definition. A subsequence {xn}n∈T of a sequence {xn}n∈U is a tail
if U r T is finite.

Example. Here are some sample domains, U = 3N for the original
sequence, S for a general kind of subsequence (missing all the even
terms from U), and T for a tail, with U r T = {3, 6, 9}:

U : 0 3 6 9 12 15 18 21 24 . . .
S : 3 9 15 21 . . .
T : 0 12 15 18 21 24 . . .

Proposition. If a tail {xn}n∈T of a sequence {xn}n∈U converges to L,
then {xn}n∈U converges to L.

Proof. Let K = max(U r T ), so K < n ∈ U implies n ∈ T . Let M be
the cost for making {xn}n∈T match L with a tolerance ε, so

(1) ∀ M ≤ n ∈ T , |xn − L| < ε .

Then max{M,K + 1} is a cost for making {xn}n∈U match L with a
tolerance ε, since the condition max{M,K+1} ≤ n ∈ U makes K < n,
putting n in T , and also makes M < n, so then |xn−L| < ε by (1). �

The proposition is summarized as the important observation that the
convergence of a sequence only depends on what happens ultimately,
and is not affected by what happens at the beginning.
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Here is the lesson summary.

Subsequences

Definition. A subsequence {xn}n∈S of a sequence {xn}n∈U is a function

S → R;n 7→ xn

whose domain is a countably infinite subset S of U .

Proposition. If {xn}n∈U converges to L,
then each subsequence {xn}n∈S converges to L.

Fact: A divergent sequence may have a convergent subsequence.

Tails. Let {xn}n∈U be a sequence.

Definition. A subsequence {xn}n∈T of a sequence {xn}n∈U is a tail
if U r T is finite.

Proposition. If a tail {xn}n∈T of {xn}n∈U converges to L,
then {xn}n∈U converges to L.

Proof. Let K = max(U r T ), so K < n ∈ U implies n ∈ T .
Let M be the cost for making {xn}n∈T match L with a tolerance ε,
so ∀ M ≤ n ∈ T , |xn − L| < ε.
Then max{M,K + 1} is a cost for making {xn}n∈U match L
with a tolerance ε,
since ∀ max{M,K + 1} ≤ n ∈ U , |xn − L| < ε. �
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