
MATH 201, MARCH 27, 2020

Here is the lesson summary from March 25. For sets that may be
infinite, we learned how to compare cardinalities, using the injective
and surjective properties of functions. The most spectacular result
was Russell’s Paradox, using proof by contradiction and set-builder
notation to show that the cardinality of any set is always strictly less
than the cardinality of its power set.

Comparing cardinalities

For sets A,B, recall |A| = |B| means there is a bijection A→ B.

Definition. Let A,B be sets.

(a) If there is a injective function A→ B,
but no surjective function A→ B, then |A| < |B|.

(b) If there is a injective function A→ B, then |A| ≤ |B|.

Proposition. A subset of a countable set is countable.

Russell’s Paradox. Recall the power set P(A) or 2A of a set A.

Proposition. For any set A, have |A| <
∣∣2A
∣∣.

Proof. Have injective function A→ 2A; a 7→ {a}.
Now suppose there is a surjective function S : A→ 2A.
Consider B = {a ∈ A | a /∈ S(a)}.
Since S : A→ 2A is surjective, have b ∈ A with S(b) = B.

Case I: b ∈ B. Then b /∈ S(b) = B, a contradiction.

Case II: b /∈ B. Then b ∈ S(b) = B, a contradiction. �
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Homework problems from the previous class

Now we’ll work some homework problems. By the way, you must
wrestle with the assigned problems yourself, before we get to this point
in the blog. Like they say, “Mathematics is not a spectator sport”.
Sitting in the bleachers won’t make you an athlete.

14.2-2: Prove that the set A = {(m,n) ∈ N × N | m ≤ n} is
countably infinite.

Note that, in the language of book section 11-1, the set A is the
relation ≤ on the set N. If you were trying this exercise immediately
after the March 23 class, you might have looked for a sweep pattern
through the roster. Taking N here to mean the book’s set of natural
numbers (so really, positive integers), we could sweep left to right across
each of a series of horizontal lines of increasing length: first {(1, 1)},
then {(1, 2), (2, 2)}, then {(1, 3), (2, 3), (3, 3)}, and so on.

But now we have a much better way to go. By definition, the set A
is a relation (≤) on the set N, a subset of N×N. Since N is countable,
the set N× N is also countable. Therefore, the subset A is countable.
It’s also infinite, since it contains the infinite subset {(n, n) | n ∈ N}.
Done!

14.3-4: Prove or disprove: If A ⊆ B ⊆ C and A and C are countably
infinite, then B is countably infinite.

The claim is true. Here’s the proof:

Proof. Since A is infinite, B is infinite. Since C is countable, B is
countable. �
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14.3-8: Prove or disprove: The set S = {(a0, a1, a2, . . . ) | ai ∈ Z} is
countable.

This was the challenge problem. Kudos if you worked it! The claim
is FALSE. So we have to prove its negation:

Proposition: The set S = {(a0, a1, a2, . . . ) | ai ∈ Z} is uncountable.

A good way to tackle the proof would be a direct application of
Cantor diagonalization. Just when anybody might have thought they’d
got a nice countable list of all the sequences, say with

f(i) = (ai0, ai1, ai2, . . . )

for each i ∈ N, you could create the “diagonalized” sequence

d = (a00 + 1, a11 + 1, a22 + 1, . . . )

which, for each i ∈ N, differs from f(i) since aii 6= aii + 1.

Here’s a formal write-up:

Proof. Suppose S is countable, say by a surjective function f : N→ S
with

f(i) = (ai0, ai1, ai2, . . . )

for each i ∈ N. Now consider the sequence

d = (a00 + 1, a11 + 1, a22 + 1, . . . ) .

Since d ∈ S = f(N), there is a natural number i with

(ai0 , ai1 , ai2 , . . . , aii , . . . ) = f(i)

= d = (a00 + 1, a11 + 1, a22 + 1, . . . , aii + 1, . . . ) .

mismatch here ↑
But comparing the i-labeled slots in the claimed equality f(i) = d, we
have aii = aii + 1, which is a contradiction. �
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Today’s new material, starting the second textbook

Now we move to the second textbook, Basic Analysis. If you need it,
an online copy is linked off the Canvas and the open class website, This
is the textbook that they use for the advanced Math 414 class, which
sets out to give a careful, justified treatment of the limit processes that
you use in calculus, like differentiation and integration.

Since Basic Analysis is an advanced textbook, it is not as relaxed and
user-friendly as our first book. There are no solutions to odd-numbered
problems.

• You will learn how to tackle the exercises by seeing what we
do in the class blogs, and then by looking carefully through the
examples that appear in the book sections listed in the reading
assignments.
• You now have to fly solo in terms of knowing whether you have

done a good job working a given problem. Here is where you
will draw on all the techniques (e.g., using definitions, proof by
contradiction, etc.) and logic that we have learnt from the first
book. Check each step in your work. If you’re not sure about
it, break it up into smaller steps.

For our class, we will only be dealing with material selected from the
first two chapters of Basic Analysis, and maybe one class dealing with
continuous functions. We will be focusing on how to do proofs involving
real numbers.
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If you recall what we did in our very first class, we gave a tight
roster-notation specification of the set

Z = {. . . ,−2,−1, 0, 1, 2, 3, . . . }
of integers, and a tight mixed-notation specification of the set

Q =
{m
n

∣∣∣ m,n ∈ Z , n 6= 0
}

of rational numbers. On the other hand, all we could do at that time
was to present the intuitive picture

-
−4 −3 −2 −1 0 1 2 3 4

of the set R of real numbers, thinking of it as like the x-axis in a
calculus-type graph or the display on your graphing calculator. So our
first task now is going to involve building up a tight specification of the
set of real numbers. It won’t be that simple (which is why we didn’t
try it before), and it will take us a couple of classes.

A good starting point is to ask: How do we access a real number
like
√

2 = 1.41421 . . . , given that right now we only have the set Q of
rational numbers at our disposal?

Looking at the picture of R, we see that the line is ordered from left to
right. Intuitively, x1 < x2 if x1 is to the left of x2 in the picture.

Now, think about the set

E = {x ∈ Q | x2 < 2}
of rational numbers. The real number

√
2 lies to the right of every

member x of E—it will be called an upper bound of E in R—but it
lies to the left of any other real number, like 1.5 or 1.42, which also
happens to be an upper bound of E in R.

In fact,
√

2 will be captured as the least upper bound of the subset E of
R. Being an “upper bound” stops

√
2 moving to the left, while having√

2 less that any other upper bound prevents
√

2 from moving to the
right. The two constraints match, and exactly locate the real number√

2 = 1.41421 . . . for us.
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Now we’re going to make our discussion precise. For today’s class,
we are only talking about order relationships x1 < x2, and disregarding
any algebra (with the exception of the squaring in the definition of the
subset E of Q or R).

Definition. A set S is (totally) ordered if it has a strict ordering
relation x < y such that the following two properties hold:

Trichotomy: For any two elements x, y of S, precisely one of the
following three possibilities holds:

x < y or x = y or x > y .

Transitivity: For any three elements x, y, z of S, the implication

x < y and y < z implies x < z

holds.

We will denote the set S, together with its ordering relation, as a pair
(S,<).

Notation. We will use the usual notations, like y > x for x < y, or
x ≤ y for “x < y or x = y”,

Examples. The pairs (N, <), (Z, <), (Q, <), (R, <) all form (totally)
ordered sets in the sense of the definition.

Example. The power set pair
(
P({0, 1}),⊂

)
, with the proper subset

relation ⊂, does not form a totally ordered set. Trichotomy fails for
x = {0} and y = {1}: the two sets are not equal, and neither is properly
contained in the other.

As we work with totally ordered sets, we will be working from the
definition using the two key properties, trichotomy and transitivity.
Trichotomy gives us useful case breakdowns. It is also great for doing
the negation in a proof by contradiction. For example, x ≤ y negates
to x > y, which we may also write as y < x.
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Let E be a subset of a totally ordered set S.

Definition.

• Element b of S is an upper bound for E if: ∀ x ∈ E , x ≤ b .
• Element b of S is a lower bound for E if: ∀ x ∈ E , b ≤ x .

Here, say E is respectively bounded above or below if such b exists.

Example. Let’s consider our subset E = {x ∈ Q | x2 < 2} of Q or
R. Then 10 is an upper bound, so the set E is bounded above. The
real number −π is a lower bound of E in R, but not in Q, since it’s
not even an element of Q. However, −200 is a lower bound for E in
Q. Thus E is bounded below in both Q and R.

Example. Every subset of N is bounded below, with 0 as a lower
bound.

Suprema and infima. These two Latin words are fancy names for
least upper bounds and greatest lower bounds. The English phrases
are good for helping you remember the two properties (a) and (b) in
the definition below. But the Latin words give us two widely used
mathematical notations: supE and inf E.

Let E be a subset of a totally ordered set S.

Definition.

• An element l of S is the supremum or least upper bound (l.u.b.)
supE for E if:
(a) l is an upper bound for E;
(b) If b is an upper bound for E, then l ≤ b.
• An element g of S is the infimum or greatest lower bound (g.l.b.)

inf E for E if:
(a) g is a lower bound for E;
(b) If b is a lower bound for E, then b ≤ g.

Some people read l.u.b. and g.l.b. as “lub” and “glub”.
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As we work with this extremely important definition, we will be
checking out the two properties (a) and (b). The proof of the following
proposition will show how that might go.

Proposition. Consider a nonempty subset E of a totally ordered set
S. Suppose that E has least upper bounds s1 and s2 in S. Then
s1 = s2.

Proof. We will prove s1 ≤ s2. Here, think of s1 as a least upper bound,
and just think of s2 as an upper bound, which we’re allowed to do by
part (a) of the definition of least upper bound as it applies to s2.

Now, since s1 is a least upper bound, and s2 is an upper bound, part
(b) of the definition of least upper bound, as it applies to s1, gives us
s1 ≤ s2.

A similar proof shows s2 ≤ s1. Then the desired equation s1 = s2
follows by trichotomy: it’s the only possible case left in the conjunction
of s1 ≤ s2 and s2 ≤ s1. �

Now that the proposition has told us that a set E has a unique least
upper bound, if it has one at all, we will write supE for that least
upper bound (supremum).

A similar proposition, flipping around the role of upper and lower
bounds, shows that infima are unique, if they exist at all. Write inf E
in that case. In future, we’ll generally do one direction of a proposition
like this, just dismissing the flip as being similar. Sometimes, the flip
will be called the “dual”.

A slicker approach would be to consider the ordered set (S,>) in its
own right: An upper bound for E in (S,>) is a lower bound for E in
(S,<), and so on. This observation can also be described as “duality”.

The final definition gives a property that an entire totally ordered set
S may or may not possess.

Definition. A totally ordered ser S has the least upper bound property
if every nonempty subset E that is bounded above actually has a least
upper bound in S.

For the time being, we will just state the follwoing results. Later, we’ll
be able to prove them:

• In Q, {q ∈ Q | q2 < 2} is bounded above, has no l.u.b. in Q.
• In R, {q ∈ Q | q2 < 2} is bounded above, has l.u.b.

√
2 in R.
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Here is the lesson summary.

Bounds in totally ordered sets

Definition. A set S is (totally) ordered if it has a strict ordering
relation x < y such that the following two properties hold:

Trichotomy: For any two elements x, y of S, precisely one of the
following three possibilities holds:

x < y or x = y or x > y .

Transitivity: For any three elements x, y, z of S, the implication

x < y and y < z implies x < z

holds.

Upper and lower bounds. Take subset E of totally ordered set S.

Definition.

• Element b of S is an upper bound for E if: ∀ x ∈ E , x ≤ b .
• Element b of S is a lower bound for E if: ∀ x ∈ E , b ≤ x .

Here, say E is respectively bounded above or below if such b exists.

Suprema and infima. Let E be a subset of a totally ordered set S.

Definition.

• An element l of S is the supremum or least upper bound (l.u.b.)
supE for E if:
(a) l is an upper bound for E;
(b) If b is an upper bound for E, then l ≤ b.
• An element g of S is the infimum or greatest lower bound (g.l.b.)

inf E for E if:
(a) g is a lower bound for E;
(b) If b is a lower bound for E, then b ≤ g.

The least upper bound property. Let S be a totally ordered set.

Definition. Say S has the least upper bound property if:
whenever Ø ⊂ E ⊆ S and E is bounded above, E has a l.u.b. in S.

• In Q, {q ∈ Q | q2 < 2} is bounded above, has no l.u.b. in Q.
• In R, {q ∈ Q | q2 < 2} is bounded above, has l.u.b.

√
2 in R.
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