
MATH 201, MARCH 23, 2020

Welcome back from the spring break! I hope you were all able to
recharge your batteries, ready for the second half of the semester. It
will be a challenge for everybody at Iowa State, adapting to a changed
way of doing things. Our goal now will be to complete the class as best
we can under the circumstances. Hopefully, by the end of the semester,
you will be ready to apply the mathematical ideas, thought processes,
and communication techniques that we learn in Math 201 to the more
advanced classes in your program, be they mathematics, economics,
engineering, statistics, or whatever.

Just before the spring break, the plan was for us to have interactive
video classes, using the Conferences feature in Canvas. The idea was
to recreate the regular classroom experience as closely as possible in
an online format. Well, that was then, and this is now! ISU can
no longer use Conferences, and has not recommended any interactive
format, or ”synchronous” as they call it. Apparently it takes way
more bandwidth than they think is going to be available, now it seems
like almost the entire white-collar workforce has gone remote, and the
internet providers are struggling to keep up.

In this environment, and bearing in mind the sometimes intense and
technical nature of the content of our class, we will be moving to our
new blog format. It should be reliably available on whatever platform
you have been using so far to access the class materials. Reading the
thrice-weekly blog will be the substitute for our previous class hours.
As in the first half of the semester, you should be attempting all the
assigned “ongoing” homework from one class in your own time (one to
two hours) before the next class. You may e-mail me with questions,
and in the first half of each new blog, we will explore selected home-
work problems from the previous class, before moving on to the new
material. The lesson summaries that we had in the first half-semester
will now appear within the blogs. The blogs are linked after the class
assignments, in the place where the lesson summaries were linked.
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Here is the lesson summary from March 13, where we learned three
equivalent ways to think about a function f : A→ B;x 7→ f(x), having
both the existence and uniqueness conditions on solutions to y = f(x)
for any y ∈ B, with the solution x ∈ A. Recall that |A| = |B| is our
first step towards being able to count infinite sets:

Bijective ≡ invertible ≡ isomorphism

Definition. On a setA, have the identity function idA : A→ A;x 7→ x.

Definition. Function f : A → B;x 7→ f(x) is invertible if there is a
function g : B → A; y 7→ g(y) such that ∀ x ∈ A , g(f(x)) = x and also
∀ y ∈ B , f(g(y)) = y, i.e., g ◦ f = idA and f ◦ g = idB.

Note g : B → A is unique, the inverse f−1 : B → A of invertible f .

Definition. Function f : A→ B;x 7→ f(x) is bijective if both injective
and surjective.

Bijective ≡ invertible: f(x) = y ⇔ x = f−1(y).
(existence and uniqueness of the solution x ∈ A to f(x) = y for y ∈ B)

Isomorphic sets. Say sets A and B are isomorphic whenever there
is a bijective function f : A → B. Then write A ∼= B or |A| = |B| —
same (possibly infinite) cardinality.

Definition. Function f : A → B;x 7→ f(x) is a (set) isomorphism if
it is bijective.

Note |N| = |A|means A is infinite, and can be written in roster notation
as A = {a0, a1, a2, . . . }.
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Homework problems from the previous class

Let’s take a look at a couple of typical homework problems.

12.2-9: Prove f : Rr {2} → Rr {5};x 7→ 5x+1
x−2

is bijective.

12.5-2: Find the inverse of the bijective function from 12.2-9.

In a single “one-line proof” of elementary algebra, we will do both
questions together. In fact, we’ll find the inverse by equation-solving.
The existence of the inverse then shows that f is invertible, and thus
bijective (since those two concepts mean the exact same thing).

Here we go:

y = f(x) =
5x+ 1

x− 2
⇔ 5x+ 1 = y(x− 2) = yx− 2y

⇔ x(5− y) = −2y − 1

⇔ x =
−2y − 1

5− y
= f−1(y)

That’s all you need!

Note the “⇔” signs that we’re using as connectives. A collection of
disjoint equations does not make sense to a reader. (Of course, on our
private “scratch paper”, we’re free to do whatever we like.)

Also, note that we were able to divide by 5− y at the last ⇔, since
y, being from the codomain R r {5}, is not allowed to equal 5. This
is a typical example of why the codomain is such an important part of
our function specifications, going beyond the much vaguer approach to
functions that you get in calculus.

Finally, note that we kept the y as the symbol for typical elements
of the set B (the domain for f and the codomain for f−1). Not only
is there no need to switch variables around (like the book suggests), it
would be a bad thing to do for two reasons. We’re keeping x for the
elements of A, and rewriting could be a source of error.
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We’ll now start doing some infinite counting.

14.1-8: For S = {x ∈ R | sinx = 1}, show |Z| = |S|.

To amswer this, we need to begin with a little trigonometry to get
a handle on the set S. Once we have S rewritten with mixed notation
involving integers, the problem becomes easy. If you’ve forgotten your
trigonometry, don’t tell anyone, just graph sin x with your graphing
calculator.

Soln. Note

x ∈ S ⇔ sinx = 1⇔ x =
π

2
+ 2nπ for some n ∈ Z .

Thus
S =

{π
2

+ 2nπ
∣∣∣ n ∈ Z

}
,

and
f : Z→ S;n 7→ π

2
+ 2nπ

is the required bijection.

Now, if your worst enemy insists on not believing that f is a bijection,
remind them that

g : S → Z;x 7→
x− π

2

2π
is the inverse f−1 to f . In other words, recalling the composition of
functions, and the definition of “invertibile” from the lesson summary,
that means g(f(n)) = n for n ∈ Z and f(g(x)) = x for x ∈ S. Check
it out, at least mentally!

As we progress to higher levels, we will start taking bigger steps in
our arguments. That’s OK, if you always make sure you could fill in
if you had to. When you’re communicating mathematics, be aware of
who your audience is, and tailor your level of detail to their level of
knowledge and familiarity with the topic. This is the ART of proof-
writing, which goes along with the SCIENCE of mathematics.
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Today’s new material

Right, let’s move on to the new material for today. We’ll cover stuff
from Sections 14.1 and 14.2 from the third edition of our first textbook.
Here’s the basic definition, with some very important terminology:

Definition. Let A be a non-empty set.

(a) If there is a surjective function f : N→ A,
i.e., A can be written in roster notation as A = {a0, a1, a2, . . . },
then A is countable.

(b) Otherwise, A is uncountable.
(c) If |N| = |A|, then A is countably infinite.

Example. A finite, non-empty set is countable.

We’ll also add that the empty set is countable, by convention, even
though it can’t be the codomain of any function from a non-empty
domain like N, let alone a surjective function, because there’s no place
for the function values that would have to be there.

Warning: Some people (they could be instructors from your more
advanced classes!) tend to reserve “countable” for what we are calling
“countably infinite” in part (c) of the definition.

In connection with (c) from the definition, note that any infinite,
countable set is countably infinite. That’s where the name comes from!

In connection with (a) from the definition, once we have the set A
in the roster notation, we can formally define the surjective

f : N→ A;n 7→ an

as our “counting” function. Often, and necessarily so if A is finite, an
element of A may show up as an ar for infinitely many natural numbers
r. But that doesn’t matter. It’s just the way the set braces { and }
work, if you recall from our very first class.
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Let’s see how to use this roster notation idea in some proofs. Also,
read the book sections carefully!

Proposition. If A and B are countable, then so is A ∪B.

Proof. Take
A = {a0, a1, a2, . . . }

and
B = {b0, b1, b2, . . . } .

Then
A ∪B = {a0, b0, a1, b1, a2, b2, . . . }

as required. �

Note the interleaving of the elements from a and b in the roster
notatiuon for A ∪B.

Proposition. If A and B are countable, then so is A×B.

Proof. Take
A = {a0, a1, a2, . . . }

and
B = {b0, b1, b2, . . . } .

Then

A×B =


...

...
...

c5 = (a0, b2), c8 = (a0, b0), c12 = (a2, b3), . . .
c2 = (a0, b1), c4 = (a1, b1), c7 = (a2, b1), . . .
c0 = (a0, b0), c1 = (a1.b0), c3 = (a2, b0), . . .


as required. �

In the roster notation array for A×B, trace out the elements c0, c1, c2,
c3, . . . in order, so you can see the pattern being used to sweep out the
two-dimensional display of A×B. The sweep pattern here is different
from the one used in the book in Figure 14.2. Our pattern is more
systematic. You could even construct a complicated formula for our
ct = (ar, bs), giving t = t(r, s) in terms of the arguments r and s. For
example,

t(r, 0) =

(
r + 1

2

)
for r > 0. But that is not a question we need to get into right now.
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The set Z is countable, indeed |N| = |Z|. Here’s one possible line-up:

N : . . . 4 2 0 1 3 . . .
Z : . . . −2 −1 0 1 2 . . .

You could convert this into a formula for a bijective function

f : N→ Z;n 7→

{
−n

2
if n is even

n+1
2

if n is odd

if you wanted, but again, that’s not our focus. In Exercise 14.2-2 for
next time, just come up with a “sweep pattern”. I won’t discuss that
exercise.

For the proof that Q is countable, see Theorem 14.4 in the book.
The main argument is a sweep of a two-dimensional array, like we had
showing that A×B is countable when A and B are.

The deepest and most important result we’ll consider today is the
Cantor diagonalization, which really means the key argument in the
proof by contradiction that we’ll give for the theorem below.

Theorem. The set R is uncountable.

Proof. Suppose there is a surjective function f : N → R, so that R
is countable. Consider the respective function values of the natural
number arguments, real numbers written out as decimal expansions,
like π = 3.14159 . . . , etc.

f(0) = n0.a00a01a02a03 . . .

f(1) = n1.a10a11a12a13 . . .

f(2) = n2.a20a21a22a23 . . .

f(3) = n3.a30a31a32a33 . . .

...

Now choose a real number x = 0.b00b11b22b33 . . .

such that, for each natural number i, the digit bii appearing in the
decimal expansion of x differs from the corresponding digit aii in the
decimal expansion of f(i). This already means that x 6= f(i). Thus
x /∈ f(N), a contradiction to f being surjective. �
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Here’s a quick illustration of the argument. Suppose

f(0) =
√

2 = 1.4142 . . .

f(1) = e = 2.7182 . . .

f(2) = π = 3.1415 . . .

...

Now, we could choose x = 0.527 . . . . Then x 6=
√

2 since
√

2 has 4 in
its first decimal place, while x has 5 there. Next, x 6= e since e has 1
in its second decimal place, while x has 2 there. And so on.

This clever diagonalization1 argument goes back to Georg Cantor
(check him out on Wikipedia!), but it turns out to have all sorts of
modern applications. For example, it implies that there are functions
p : N→ N for which you cannot write a computer program. (There are
only countably many programs, but uncountably many functions.)

The next page has the summary of today’s lesson.

1The diagonal is formed by the bolded digits in the arrays.
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Countable and uncountable sets

Definition. Let A be a non-empty set.

(a) If there is a surjective function f : N→ A,
i.e., A can be written in roster notation as A = {a0, a1, a2, . . . },
then A is countable.

(b) Otherwise, A is uncountable.
(c) If |N| = |A|, then A is countably infinite.

Examples. Finite sets, N, Z, and Q are countable.
The latter three are counatbly infinite. Finite sets are not.

Theorem. A,B countable ⇒ A ∪B, A×B countable.

Cantor diagonalization. The set R is uncountable.
Suppose f : N→ R is surjective.

f(0) = n0.a00a01a02a03 . . .

f(1) = n1.a10a11a12a13 . . .

f(2) = n2.a20a21a22a23 . . .

f(3) = n3.a30a31a32a33 . . .

...

Choose x = 0.b00b11b22b33 . . .

If ∀ i ∈ N , aii 6= bii, then x /∈ f(N), a contradiction.
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